Primitive Ideals and Automorphisms of Quantum Matrices

Let be a field and q be a nonzero element of that is not a root of unity. We give a criterion for 〈0〉 to be a primitive ideal of the algebra of quantum matrices. Next, we describe all height one primes of ; these two problems are actually interlinked since it turns out that 〈0〉 is a primitive ideal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2007-08, Vol.10 (4), p.339-365
Hauptverfasser: Launois, S., Lenagan, T. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a field and q be a nonzero element of that is not a root of unity. We give a criterion for 〈0〉 to be a primitive ideal of the algebra of quantum matrices. Next, we describe all height one primes of ; these two problems are actually interlinked since it turns out that 〈0〉 is a primitive ideal of whenever has only finitely many height one primes. Finally, we compute the automorphism group of in the case where m ≠ n. In order to do this, we first study the action of this group on the prime spectrum of . Then, by using the preferred basis of and PBW bases, we prove that the automorphism group of is isomorphic to the torus when m ≠ n and (m,n) ≠ (1, 3),(3, 1).
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-007-9059-0