Characterizing linear mappings through zero products or zero Jordan products
Let A be a ∗ -algebra and M be a ∗ - A -bimodule. We study the local properties of ∗ -derivations and ∗ -Jordan derivations from A into M under the following orthogonality conditions on elements in A : a b ∗ = 0 , a b ∗ + b ∗ a = 0 and a b ∗ = b ∗ a = 0 . We characterize the mappings on zero product...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2022-06, Vol.84 (2), p.270-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be a
∗
-algebra and
M
be a
∗
-
A
-bimodule. We study the local properties of
∗
-derivations and
∗
-Jordan derivations from
A
into
M
under the following orthogonality conditions on elements in
A
:
a
b
∗
=
0
,
a
b
∗
+
b
∗
a
=
0
and
a
b
∗
=
b
∗
a
=
0
. We characterize the mappings on zero product determined algebras and zero Jordan product determined algebras. Moreover, we give some applications on
C
∗
-algebras, group algebras, matrix algebras, algebras of locally measurable operators and von Neumann algebras. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-021-00404-y |