Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks
For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-f...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2022-04, Vol.56 (2), p.160-165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 2 |
container_start_page | 160 |
container_title | Automatic control and computer sciences |
container_volume | 56 |
creator | Bharath, Y. K. |
description | For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-forward neural networks used for chaotic time-series prediction. Here, the learning rate is varied based on Griffiths’ cross-correlation between input training data and squared error, which facilitates better tracking of time-series data. |
doi_str_mv | 10.3103/S0146411622020031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666539819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666539819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-30c547b970a64be27dd35df14b26eaf695194f3336fda44b701056e5b814fa2a3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFYfwNuC5-j-b3IsxVahtGBVvIVNM1u3pkmdTSnefA1fzydxS4UexNMcvu83M_wIueTsWnImb2aMK6M4N0IwwZjkR6TDtU4TztKXY9LZ4WTHT8lZCEvGIktNh_gReud8-xq-P7_os0VviwroGCzWvl7QB9sCndaVr4HO4H0DdettdeD9atFgjK-oa5AOAcpk2ODWYkknsMGoTqDdNvgWzsmJs1WAi9_ZJU_D28fBXTKeju4H_XEyF8q0iWRzrXpF1mPWqAJEryylLh1XhTBgnck0z5STUhpXWqWKHuNMG9BFypWzwsouudrvXWMT_w1tvmw2WMeTuTDGaJmlPIsW31tzbEJAcPka_criR85Zvms0_9NozIh9JkS3XgAeNv8f-gHjeniS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666539819</pqid></control><display><type>article</type><title>Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks</title><source>SpringerNature Journals</source><creator>Bharath, Y. K.</creator><creatorcontrib>Bharath, Y. K.</creatorcontrib><description>For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-forward neural networks used for chaotic time-series prediction. Here, the learning rate is varied based on Griffiths’ cross-correlation between input training data and squared error, which facilitates better tracking of time-series data.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411622020031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Computer Science ; Control Structures and Microprogramming ; Cross correlation ; Machine learning ; Neural networks ; Training</subject><ispartof>Automatic control and computer sciences, 2022-04, Vol.56 (2), p.160-165</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0146-4116, Automatic Control and Computer Sciences, 2022, Vol. 56, No. 2, pp. 160–165. © Allerton Press, Inc., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-30c547b970a64be27dd35df14b26eaf695194f3336fda44b701056e5b814fa2a3</citedby><cites>FETCH-LOGICAL-c246t-30c547b970a64be27dd35df14b26eaf695194f3336fda44b701056e5b814fa2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411622020031$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411622020031$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bharath, Y. K.</creatorcontrib><title>Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-forward neural networks used for chaotic time-series prediction. Here, the learning rate is varied based on Griffiths’ cross-correlation between input training data and squared error, which facilitates better tracking of time-series data.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Cross correlation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQhxdRsFYfwNuC5-j-b3IsxVahtGBVvIVNM1u3pkmdTSnefA1fzydxS4UexNMcvu83M_wIueTsWnImb2aMK6M4N0IwwZjkR6TDtU4TztKXY9LZ4WTHT8lZCEvGIktNh_gReud8-xq-P7_os0VviwroGCzWvl7QB9sCndaVr4HO4H0DdettdeD9atFgjK-oa5AOAcpk2ODWYkknsMGoTqDdNvgWzsmJs1WAi9_ZJU_D28fBXTKeju4H_XEyF8q0iWRzrXpF1mPWqAJEryylLh1XhTBgnck0z5STUhpXWqWKHuNMG9BFypWzwsouudrvXWMT_w1tvmw2WMeTuTDGaJmlPIsW31tzbEJAcPka_criR85Zvms0_9NozIh9JkS3XgAeNv8f-gHjeniS</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Bharath, Y. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks</title><author>Bharath, Y. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-30c547b970a64be27dd35df14b26eaf695194f3336fda44b701056e5b814fa2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Cross correlation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharath, Y. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharath, Y. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>56</volume><issue>2</issue><spage>160</spage><epage>165</epage><pages>160-165</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-forward neural networks used for chaotic time-series prediction. Here, the learning rate is varied based on Griffiths’ cross-correlation between input training data and squared error, which facilitates better tracking of time-series data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411622020031</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2022-04, Vol.56 (2), p.160-165 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2666539819 |
source | SpringerNature Journals |
subjects | Algorithms Artificial neural networks Computer Science Control Structures and Microprogramming Cross correlation Machine learning Neural networks Training |
title | Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Griffiths%E2%80%99%20Variable%20Learning%20Rate%20Online%20Sequential%20Learning%20Algorithm%20for%20Feed-Forward%20Neural%20Networks&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Bharath,%20Y.%20K.&rft.date=2022-04-01&rft.volume=56&rft.issue=2&rft.spage=160&rft.epage=165&rft.pages=160-165&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411622020031&rft_dat=%3Cproquest_cross%3E2666539819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666539819&rft_id=info:pmid/&rfr_iscdi=true |