Griffiths’ Variable Learning Rate Online Sequential Learning Algorithm for Feed-Forward Neural Networks

For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2022-04, Vol.56 (2), p.160-165
1. Verfasser: Bharath, Y. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For online sequential training of deep neural networks, where the training data set is chaotic in nature, it becomes quite challenging for choosing a proper learning rate. This paper presents Griffiths’ variable learning rate algorithm for improved performance of online sequential learning of feed-forward neural networks used for chaotic time-series prediction. Here, the learning rate is varied based on Griffiths’ cross-correlation between input training data and squared error, which facilitates better tracking of time-series data.
ISSN:0146-4116
1558-108X
DOI:10.3103/S0146411622020031