On a generalization of a congruence related to q-Narayana numbers
In this note, we study factors of some alternating sums of products of q -binomial coefficients related to q -Narayana numbers. Let n k denote the q -binomial coefficients. We prove that for all positive integers n 1 , … , n m , n m + 1 = n 1 , and j = 0 or 2 m - 1 , the alternating sum n 1 + n m +...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-06, Vol.55 (4), p.1299-1305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we study factors of some alternating sums of products of
q
-binomial coefficients related to
q
-Narayana numbers. Let
n
k
denote the
q
-binomial coefficients. We prove that for all positive integers
n
1
,
…
,
n
m
,
n
m
+
1
=
n
1
, and
j
=
0
or
2
m
-
1
, the alternating sum
n
1
+
n
m
+
1
n
1
-
1
∑
k
=
-
n
1
n
1
(
-
1
)
k
q
j
k
2
+
k
2
∏
i
=
1
m
n
i
+
n
i
+
1
+
1
n
i
+
k
n
i
+
n
i
+
1
+
1
n
i
+
k
+
1
is a polynomial in
q
with integer coefficients, and it has non-negative coefficients if
m
is odd. This partially confirms a conjecture of Guo and Jiang. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-021-01096-w |