Purely coclosed G2-structures on 2-step nilpotent Lie groups

We consider left-invariant (purely) coclosed G 2 -structures on 7-dimensional 2-step nilpotent Lie groups. According to the dimension of the commutator subgroup, we obtain various criteria characterizing the Riemannian metrics induced by left-invariant purely coclosed G 2 -structures. Then, we use t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2022, Vol.35 (2), p.323-359
Hauptverfasser: del Barco, Viviana, Moroianu, Andrei, Raffero, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider left-invariant (purely) coclosed G 2 -structures on 7-dimensional 2-step nilpotent Lie groups. According to the dimension of the commutator subgroup, we obtain various criteria characterizing the Riemannian metrics induced by left-invariant purely coclosed G 2 -structures. Then, we use them to determine the isomorphism classes of 2-step nilpotent Lie algebras admitting such type of structures. As an intermediate step, we show that every metric on a 2-step nilpotent Lie algebra admitting coclosed G 2 -structures is induced by one of them. Finally, we use our results to give the explicit description of the metrics induced by purely coclosed G 2 -structures on 2-step nilpotent Lie algebras with derived algebra of dimension at most two, up to automorphism.
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-021-00392-0