Nonexistence of self-similar singularities for the 3D incompressible euler equations
We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations if the vorticity decays sufficiently fast near infinity in . By a similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equatio...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2007-07, Vol.273 (1), p.203-215 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations if the vorticity decays sufficiently fast near infinity in . By a similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in . This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-007-0249-8 |