Nonexistence of self-similar singularities for the 3D incompressible euler equations

We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations if the vorticity decays sufficiently fast near infinity in . By a similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2007-07, Vol.273 (1), p.203-215
1. Verfasser: CHAE, Dongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations if the vorticity decays sufficiently fast near infinity in . By a similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in . This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-007-0249-8