Δ1 Ultrapowers are totally rigid
Hirschfeld and Wheeler proved in 1975 that ∑1 ultrapowers (= “simple models”) are rigid; i.e., they admit no non-trivial automorphisms. We later noted, essentially mimicking their technique, that the same is true of Δ1 ultrapowers (= “Nerode semirings”), a class of models of Π2 Arithmetic that overl...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2007-07, Vol.46 (5-6), p.379-384 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hirschfeld and Wheeler proved in 1975 that ∑1 ultrapowers (= “simple models”) are rigid; i.e., they admit no non-trivial automorphisms. We later noted, essentially mimicking their technique, that the same is true of Δ1 ultrapowers (= “Nerode semirings”), a class of models of Π2 Arithmetic that overlaps, but is mutually non-inclusive with, the class of Σ1 ultrapowers. Hirschfeld and Wheeler left as open the question whether some Σ1 ultrapowers might admit proper isomorphic self-injections. We do not answer that question; but we do answer the corresponding question, in the negative, for the Δ1 case. |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-007-0038-2 |