Effects of Shallow Carbon and Deep N++ Layer on the Radiation Hardness of IHEP-IME LGAD Sensors

Low-gain avalanche diode (LGAD) is the chosen technology for the ATLAS high-granularity timing detector (HGTD). According to previous studies, the acceptor removal effect due to the radiation and the single-event burnout (SEB) at high bias voltages are still a challenge for the LGAD. The Institute o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2022-05, Vol.69 (5), p.1098-1103
Hauptverfasser: Li, Mengzhao, Fan, Yunyun, Jia, Xuewei, Cui, Han, Liang, Zhijun, Zhao, Mei, Yang, Tao, Wu, Kewei, Li, Shuqi, Yu, Chengjun, Liu, Bo, Wang, Wei, Yang, Xuan, Tan, Yuhang, Shi, Xin, da Costa, Joao Guimaraes, Heng, Yuekun, Xu, Gaobo, Zhai, Qionghua, Yan, Gangping, Ding, Mingzheng, Luo, Jun, Yin, Huaxiang, Li, Junfeng, Howard, Alissa, Kramberger, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-gain avalanche diode (LGAD) is the chosen technology for the ATLAS high-granularity timing detector (HGTD). According to previous studies, the acceptor removal effect due to the radiation and the single-event burnout (SEB) at high bias voltages are still a challenge for the LGAD. The Institute of High Energy Physics (IHEP), Beijing, China, cooperated with the Institute of Microelectronics (IME), Beijing, China, for the design and fabrication of the IHEP-IME LGAD sensors with shallow carbon and deep N++ layer to improve the radiation hardness of LGAD. After neutron irradiation up to 2.5 \times 10^{15}\,\,{\mathrm{ n}}_{\mathrm{ eq}} /cm 2 , the leakage current, the collected charge, and timing resolution of the three IHEP-IME sensors measured with a beta telescope setup meet the HGTD requirements ( < 125~\mu \text{A} /cm 2 , >4 fC, and
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2022.3161048