A Novel ISAC Transmission Framework Based on Spatially-Spread Orthogonal Time Frequency Space Modulation

In this paper, we propose a novel integrated sensing and communication (ISAC) transmission framework based on the spatially spread orthogonal time frequency space (SS-OTFS) modulation by considering the fact that communication channel strengths cannot be directly obtained from radar sensing. We firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2022-06, Vol.40 (6), p.1854-1872
Hauptverfasser: Li, Shuangyang, Yuan, Weijie, Liu, Chang, Wei, Zhiqiang, Yuan, Jinhong, Bai, Baoming, Ng, Derrick Wing Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel integrated sensing and communication (ISAC) transmission framework based on the spatially spread orthogonal time frequency space (SS-OTFS) modulation by considering the fact that communication channel strengths cannot be directly obtained from radar sensing. We first propose the concept of SS-OTFS modulation, where the key novelty is the angular domain discretization enabled by the spatial spreading/de-spreading. This discretization gives rise to simple and insightful effective models for both radar sensing and communication, which results in simplified designs for the related estimation and detection problems. In particular, we design simple beam tracking, angle estimation, and power allocation schemes for radar sensing, by utilizing the special structure of the effective radar sensing matrix. Meanwhile, we provide a detailed analysis on the pair-wise error probability (PEP) for communication, which unveils the key conditions for both precoding and power allocation designs for communication. Based on those conditions, we design a symbol-wise precoding scheme for communication based only on the delay, Doppler, and angle estimates from radar sensing, without the a priori knowledge of the communication channel fading coefficients, and also propose a suitable power allocation. Furthermore, we notice that radar sensing and communication requires different power allocations. Therefore, we discuss the performances of both the radar sensing and communication with different power allocations and show that the power allocation should be designed leaning towards radar sensing in practical scenarios. The effectiveness of the proposed ISAC transmission framework is verified by our numerical results, which also agree with our analysis and discussions.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3155538