Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity

This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2022, Vol.29 (4)
Hauptverfasser: Kita, Naoyasu, Sato, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Nonlinear differential equations and applications
container_volume 29
creator Kita, Naoyasu
Sato, Takuya
description This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1 / ( p - 1 ) - 1 / 2 in L 2 , then it must be a trivial solution. The other one shows the existence of a solution decaying just at the rate of t - d in L 2 .
doi_str_mv 10.1007/s00030-022-00772-5
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2665621738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665621738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-845dec290e307cb5abbbf9817e76207c5af047768cc11e488adf0e287b2469613</originalsourceid><addsrcrecordid>eNpFkEtOwzAQhi0EEqVwAVaWWBvGk8ROlqgCilSpC2BtOYlDXaVxGjugXowLcDHcFqmreX3z-gm55XDPAeSDB4AEGCCyGEpk2RmZ8BSBFQDpefQBOSsk4iW58n4NwKVIignZLPtgN7qlC2S1qfSOuoZ6147Bus7T4Kimneta2xk90LdqNfz-1Lb7NAM121HvKfptw4r6sWTVYIOt4rDaem_7WP0yp24bdtfkotGtNzf_dko-np_eZ3O2WL68zh4XrOeZDCxPs3gLFmASkFWZ6bIsmyLn0kiBMZPpBlIpRV5VnJs0z3XdgMFclpiKQvBkSu6Oc_vBbUfjg1q7cejiSoVCZAK5TPJIJUfK98PhpRPFQe11VUddVdRVHXRVWfIH1fxtVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665621738</pqid></control><display><type>article</type><title>Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity</title><source>SpringerLink Journals</source><creator>Kita, Naoyasu ; Sato, Takuya</creator><creatorcontrib>Kita, Naoyasu ; Sato, Takuya</creatorcontrib><description>This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1 / ( p - 1 ) - 1 / 2 in L 2 , then it must be a trivial solution. The other one shows the existence of a solution decaying just at the rate of t - d in L 2 .</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-022-00772-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Boundary value problems ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Optimization ; Schrodinger equation</subject><ispartof>Nonlinear differential equations and applications, 2022, Vol.29 (4)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-845dec290e307cb5abbbf9817e76207c5af047768cc11e488adf0e287b2469613</cites><orcidid>0000-0003-2350-6429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-022-00772-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-022-00772-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kita, Naoyasu</creatorcontrib><creatorcontrib>Sato, Takuya</creatorcontrib><title>Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1 / ( p - 1 ) - 1 / 2 in L 2 , then it must be a trivial solution. The other one shows the existence of a solution decaying just at the rate of t - d in L 2 .</description><subject>Analysis</subject><subject>Boundary value problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Schrodinger equation</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtOwzAQhi0EEqVwAVaWWBvGk8ROlqgCilSpC2BtOYlDXaVxGjugXowLcDHcFqmreX3z-gm55XDPAeSDB4AEGCCyGEpk2RmZ8BSBFQDpefQBOSsk4iW58n4NwKVIignZLPtgN7qlC2S1qfSOuoZ6147Bus7T4Kimneta2xk90LdqNfz-1Lb7NAM121HvKfptw4r6sWTVYIOt4rDaem_7WP0yp24bdtfkotGtNzf_dko-np_eZ3O2WL68zh4XrOeZDCxPs3gLFmASkFWZ6bIsmyLn0kiBMZPpBlIpRV5VnJs0z3XdgMFclpiKQvBkSu6Oc_vBbUfjg1q7cejiSoVCZAK5TPJIJUfK98PhpRPFQe11VUddVdRVHXRVWfIH1fxtVA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kita, Naoyasu</creator><creator>Sato, Takuya</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0003-2350-6429</orcidid></search><sort><creationdate>2022</creationdate><title>Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity</title><author>Kita, Naoyasu ; Sato, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-845dec290e307cb5abbbf9817e76207c5af047768cc11e488adf0e287b2469613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Boundary value problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kita, Naoyasu</creatorcontrib><creatorcontrib>Sato, Takuya</creatorcontrib><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kita, Naoyasu</au><au>Sato, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1 / ( p - 1 ) - 1 / 2 in L 2 , then it must be a trivial solution. The other one shows the existence of a solution decaying just at the rate of t - d in L 2 .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-022-00772-5</doi><orcidid>https://orcid.org/0000-0003-2350-6429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1021-9722
ispartof Nonlinear differential equations and applications, 2022, Vol.29 (4)
issn 1021-9722
1420-9004
language eng
recordid cdi_proquest_journals_2665621738
source SpringerLink Journals
subjects Analysis
Boundary value problems
Mathematics
Mathematics and Statistics
Nonlinearity
Optimization
Schrodinger equation
title Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20L2-decay%20of%20solutions%20to%20a%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20sub-critical%20dissipative%20nonlinearity&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Kita,%20Naoyasu&rft.date=2022&rft.volume=29&rft.issue=4&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-022-00772-5&rft_dat=%3Cproquest_sprin%3E2665621738%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665621738&rft_id=info:pmid/&rfr_iscdi=true