Optimal L2-decay of solutions to a nonlinear Schrödinger equation with sub-critical dissipative nonlinearity
This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than t - d with d = 1...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2022, Vol.29 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D-nonlinear Schrödinger equations with a sub-critical dissipative power nonlinearity. Our aim is to obtain two results. One asserts that, if a global solution decays more rapidly than
t
-
d
with
d
=
1
/
(
p
-
1
)
-
1
/
2
in
L
2
, then it must be a trivial solution. The other one shows the existence of a solution decaying just at the rate of
t
-
d
in
L
2
. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-022-00772-5 |