3D-printed structured catalysts for CO2 methanation reaction: Advancing of gyroid-based geometries

[Display omitted] •Ru-Ni structured catalysts for CO2 methanation reaction are developed.•CO2 methanation catalysts supported over FGEs-based metal substrates.•Variations on the FGEs- geometry enabled enhanced catalytic performances.•A mathematical model delivered the optimal operating conditions. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2022-04, Vol.258, p.115464, Article 115464
Hauptverfasser: González-Castaño, Miriam, Baena-Moreno, Francisco, Carlos Navarro de Miguel, Juan, Miah, Kamal U.M., Arroyo-Torralvo, Fátima, Ossenbrink, Ralf, Odriozola, Jose Antonio, Benzinger, Walther, Hensel, Andreas, Wenka, Achim, Arellano-García, Harvey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Ru-Ni structured catalysts for CO2 methanation reaction are developed.•CO2 methanation catalysts supported over FGEs-based metal substrates.•Variations on the FGEs- geometry enabled enhanced catalytic performances.•A mathematical model delivered the optimal operating conditions. This work investigates the CO2 methanation rate of structured catalysts by tuning the geometry of 3D-printed metal Fluid Guiding Elements (FGEs) structures based on periodically variable pseudo-gyroid geometries. The enhanced performance showed by the structured catalytic systems is mostly associated with the capability of the FGEs substrate geometries for efficient heat usages. Thus, variations on the channels diameter resulted in ca. 25% greater CO2 conversions values at intermediate temperature ranges. The highest void fraction evidenced in the best performing catalyst (3D-1) favored the radial heat transfer and resulted in significantly enhanced catalytic activity, achieving close to equilibrium (75%) conversions at 400 °C and 120 mL/min. For the 3D-1 catalyst, a mathematical model based on an experimental design was developed thus enabling the estimation of its behavior as a function of temperature, spatial velocity, hydrogen to carbon dioxide (H2/CO2) ratio, and inlet CO2 concentration. Its optimal operating conditions were established under 3 different scenarios: 1) no restrictions, 2) minimum H2:CO2 ratios, and 3) minimum temperatures and H2/CO2 ratio. For instance, for the lattest scenario, the best CO2 methanation conditions require operating at 431 °C, 200 mL/min, H2/CO2 = 3 M ratio, and inlet CO2 concentration = 10 %.
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2022.115464