An evolutionary Haar-Rado type theorem
In this paper, we study variational solutions to parabolic equations of the type ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values u 0 on the parabolic boundary and f , g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-05, Vol.168 (1-2), p.65-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study variational solutions to parabolic equations of the type
∂
t
u
-
div
x
(
D
ξ
f
(
D
u
)
)
+
D
u
g
(
x
,
u
)
=
0
, where
u
attains time-independent boundary values
u
0
on the parabolic boundary and
f
,
g
fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values
u
0
admit a modulus of continuity
ω
and the estimate
|
u
(
x
,
t
)
-
u
0
(
γ
)
|
≤
ω
(
|
x
-
γ
|
)
holds, then
u
admits the same modulus of continuity in the spatial variable. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-021-01293-8 |