An evolutionary Haar-Rado type theorem

In this paper, we study variational solutions to parabolic equations of the type ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values u 0 on the parabolic boundary and f ,  g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-05, Vol.168 (1-2), p.65-88
Hauptverfasser: Rainer, Rudolf, Siltakoski, Jarkko, Stanin, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study variational solutions to parabolic equations of the type ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values u 0 on the parabolic boundary and f ,  g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values u 0 admit a modulus of continuity ω and the estimate | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-021-01293-8