Performance portability in a real world application: PHAST applied to Caffe
This work covers the PHAST Library’s employment, a hardware-agnostic programming library, to a real-world application like the Caffe framework. The original implementation of Caffe consists of two different versions of the source code: one to run on CPU platforms and another one to run on the GPU si...
Gespeichert in:
Veröffentlicht in: | The international journal of high performance computing applications 2022-05, Vol.36 (3), p.419-439 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work covers the PHAST Library’s employment, a hardware-agnostic programming library, to a real-world application like the Caffe framework. The original implementation of Caffe consists of two different versions of the source code: one to run on CPU platforms and another one to run on the GPU side. With PHAST, we aim to develop a single-source code implementation capable of running efficiently on CPU and GPU. In this paper, we start by carrying out a basic Caffe implementation performance analysis using PHAST. Then, we detail possible performance upgrades. We find that the overall performance is dominated by few ‘heavy’ layers. In refining the inefficient parts of this version, we find two different approaches: improvements to the Caffe source code and improvements to the PHAST Library itself, which ultimately translates into improved performance in the PHAST version of Caffe. We demonstrate that our PHAST implementation achieves performance portability on CPUs and GPUs. With a single source, the PHAST version of Caffe provides the same or even better performance than the original version of Caffe built from two different codebases. For the MNIST database, the PHAST implementation takes an equivalent amount of time as native code in CPU and GPU. Furthermore, PHAST achieves a speedup of 51% and a 49% with the CIFAR-10 database against native code in CPU and GPU, respectively. These results provide a new horizon for software development in the upcoming heterogeneous computing era. |
---|---|
ISSN: | 1094-3420 1741-2846 |
DOI: | 10.1177/10943420221077107 |