Multi-feature decision fusion algorithm for disease detection on crop surface based on machine vision

In order to solve the problem of crop disease detection in large-scale planting, a new crop disease detection algorithm based on multi-feature decision fusion is proposed. This paper proposes a multi-feature decision fusion disease discrimination algorithm (PD R-CNN) based on machine vision on crop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-06, Vol.34 (12), p.9471-9484
Hauptverfasser: Hua, Shan, Xu, Minjie, Xu, Zhifu, Ye, Hongbao, Zhou, Chengquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to solve the problem of crop disease detection in large-scale planting, a new crop disease detection algorithm based on multi-feature decision fusion is proposed. This paper proposes a multi-feature decision fusion disease discrimination algorithm (PD R-CNN) based on machine vision on crop surfaces. The algorithm is based on the machine vision processing model of R-CNN and integrates a disease discrimination algorithm on the basis of R-CNN. After training on crop image data sets, PD R-CNN can reach the goal of identifying crop surface lesions. This paper uses machine vision image acquisition, image processing and analysis technology to collect and analyze the growth of cucumber seedlings. The research results show that compared with manual judgment, PD R-CNN reduces the workload and can effectively distinguish crop diseases. Through experiments, during the occurrence of pests and diseases, PD R-CNN has a monitoring accuracy of 88.0% for mosaic disease, 92.0% for root rot, 88.0% for powdery mildew, and 86.0% for aphids, indicating that there are errors in actual monitoring, but the accuracy exceeds 85.0% can be put into use.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-021-06388-7