R5: Rule Discovery with Reinforced and Recurrent Relational Reasoning

Systematicity, i.e., the ability to recombine known parts and rules to form new sequences while reasoning over relational data, is critical to machine intelligence. A model with strong systematicity is able to train on small-scale tasks and generalize to large-scale tasks. In this paper, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Lu, Shengyao, Liu, Bang, Mills, Keith G, Shangling Jui, Niu, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systematicity, i.e., the ability to recombine known parts and rules to form new sequences while reasoning over relational data, is critical to machine intelligence. A model with strong systematicity is able to train on small-scale tasks and generalize to large-scale tasks. In this paper, we propose R5, a relational reasoning framework based on reinforcement learning that reasons over relational graph data and explicitly mines underlying compositional logical rules from observations. R5 has strong systematicity and being robust to noisy data. It consists of a policy value network equipped with Monte Carlo Tree Search to perform recurrent relational prediction and a backtrack rewriting mechanism for rule mining. By alternately applying the two components, R5 progressively learns a set of explicit rules from data and performs explainable and generalizable relation prediction. We conduct extensive evaluations on multiple datasets. Experimental results show that R5 outperforms various embedding-based and rule induction baselines on relation prediction tasks while achieving a high recall rate in discovering ground truth rules.
ISSN:2331-8422