Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition

Vertically aligned ZnO nanonails have been successfully grown on annealed sapphire substrates at comparatively high gas pressure using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The growth behavior of the ZnO nanonails has been investigated by variation of the abla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2007-10, Vol.89 (1), p.141-144
Hauptverfasser: Guo, R.Q., Nishimura, J., Ueda, M., Higashihata, M., Nakamura, D., Okada, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vertically aligned ZnO nanonails have been successfully grown on annealed sapphire substrates at comparatively high gas pressure using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The growth behavior of the ZnO nanonails has been investigated by variation of the ablation time, which we name ‘isolated particle initiated growth’ and a three-step growth mechanism for ZnO nanonails is proposed. SEM analysis reveals that each of the uniquely shaped ZnO nanonails consists of a so-called hexagonal rod-shaped ‘root’ and a slightly tapered ‘stem’. The well-aligned ZnO nanonails exhibit a strong ultraviolet (UV) emission at around 390 nm under room temperature and only negligible visible emission, which indicates that there is a very low concentration of oxygen vacancies in the highly oriented ZnO nanonails. The as-synthesized nanonail arrays on sapphire substrate could offer novel opportunities for both fundamental research and technological applications.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-007-4174-7