Rod type photonic crystal optical line defect waveguides with optical modulations

This paper reports the design and principles of two dimensional rod-type photonic crystal (PhC) line defect waveguides for bandgap based optical waveguiding, static modulation and high speed dynamic optical switchings. Experiments were carried out for both high aspect ratio and slab type configurati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2007-11, Vol.89 (2), p.417-422
Hauptverfasser: Teo, S.H.G., Liu, A.Q., Singh, J., Yu, M.B., Lo, G.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the design and principles of two dimensional rod-type photonic crystal (PhC) line defect waveguides for bandgap based optical waveguiding, static modulation and high speed dynamic optical switchings. Experiments were carried out for both high aspect ratio and slab type configurations. The differences in waveguiding mechanisms for the two configurations resulting from the presence of bottom cladding systems, without out-of-plane symmetries are compared for their advantages and disadvantages. In particular, the designs of non-top-clad optical waveguides of layout sizes within micrometers and operational frequencies centered at the optical communication wavelength of 1550 nm, were investigated for the feasibility of large scale integration by batch fabrication process techniques – such as sub-micrometer optical lithography etc. Based on such techniques, specifically designed dispersions of line defect PhC waveguides within a missing row of PhC rods were accompanied by optical testing structures of suitable coupling modes. Optical measurements of waveguiding coefficients were therefore enabled for the different configurations, together with further static and dynamic modulations.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-007-4122-6