Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel

The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed toget...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2004-03, Vol.35 (13), p.1039-1053
Hauptverfasser: Lambert-Perlade, A., Gourgues, A. F., Besson, J., Sturel, T., Pineau, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-004-1007-6