Weak Commutativity in Idempotent Semirings

Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2006-04, Vol.72 (2), p.283-311
1. Verfasser: Pastijn, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] denotes the variety of all idempotent semirings whose additive [multiplicative] reduct is a semilattice. In particular, U = L(S+ l) ⋁ L(S. l). Every subvariety of U is finitely generated and finitely based. If S ∈ U, then both the additive reduct and the multiplicative reduct of S are regular bands. The structural relevance of the least U-congruence is investigated.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-005-0543-8