Automated proofs of upper bounds on the running time of splitting algorithms
The splitting method is one of the most powerful and well-studied approaches to solving various NP-hard problems. The main idea of this method is to split the input instance of a problem into several simpler instances (further simplified by certain simplification rules) such that when the solution f...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2006-05, Vol.134 (5), p.2383-2391 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The splitting method is one of the most powerful and well-studied approaches to solving various NP-hard problems. The main idea of this method is to split the input instance of a problem into several simpler instances (further simplified by certain simplification rules) such that when the solution for each of them is found, one can construct the solution for the initial instance in polynomial time. There exists a huge number of papers describing algorithms of this type, and usually a considerable part of such a paper is devoted to case analysis. In this paper, we present a program that, given a set of simplification rules, automatically generates a proof of an upper bound on the running time of a splitting algorithm using these rules. As an example, we report the results of experiments with such a program for the SAT, MAXSAT, and (n, 3)-MAXSAT (the MAXSAT problem for the case where every variable in the formula appears at most three times) problems. Bibliography: 13 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-006-0114-x |