Large n limit of gaussian random matrices with external source, Part III: Double scaling limit
We consider the double scaling limit in the random matrix ensemble with an external source defined on n × n Hermitian matrices, where A is a diagonal matrix with two eigenvalues ±a of equal multiplicities. The value a = 1 is critical since the eigenvalues of M accumulate as n → ∞ on two intervals fo...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2007-03, Vol.270 (2), p.481-517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the double scaling limit in the random matrix ensemble with an external source defined on n × n Hermitian matrices, where A is a diagonal matrix with two eigenvalues ±a of equal multiplicities. The value a = 1 is critical since the eigenvalues of M accumulate as n → ∞ on two intervals for a > 1 and on one interval for 0 < a < 1. These two cases were treated in Parts I and II, where we showed that the local eigenvalue correlations have the universal limiting behavior known from unitary random matrix ensembles. For the critical case a = 1 new limiting behavior occurs which is described in terms of Pearcey integrals, as shown by Brézin and Hikami, and Tracy and Widom. We establish this result by applying the Deift/Zhou steepest descent method to a 3 × 3-matrix valued Riemann-Hilbert problem which involves the construction of a local parametrix out of Pearcey integrals. We resolve the main technical issue of matching the local Pearcey parametrix with a global outside parametrix by modifying an underlying Riemann surface. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-006-0159-1 |