Base sizes of primitive permutation groups
Let G be a permutation group, acting on a set Ω of size n . A subset B of Ω is a base for G if the pointwise stabilizer G ( B ) is trivial. Let b ( G ) be the minimal size of a base for G . A subgroup G of Sym ( n ) is large base if there exist integers m and r ≥ 1 such that Alt ( m ) r ⊴ G ≤ Sym (...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2022, Vol.198 (2), p.411-443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a permutation group, acting on a set
Ω
of size
n
. A subset
B
of
Ω
is a
base
for
G
if the pointwise stabilizer
G
(
B
)
is trivial. Let
b
(
G
) be the minimal size of a base for
G
. A subgroup
G
of
Sym
(
n
)
is
large base
if there exist integers
m
and
r
≥
1
such that
Alt
(
m
)
r
⊴
G
≤
Sym
(
m
)
≀
Sym
(
r
)
, where the action of
Sym
(
m
)
is on
k
-element subsets of
{
1
,
⋯
,
m
}
and the wreath product acts with product action. In this paper we prove that if
G
is primitive and not large base, then either
G
is the Mathieu group
M
24
in its natural action on 24 points, or
b
(
G
)
≤
⌈
log
n
⌉
+
1
. Furthermore, we show that there are infinitely many primitive groups
G
that are not large base for which
b
(
G
)
>
log
n
+
1
, so our bound is optimal. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-021-01599-5 |