Base sizes of primitive permutation groups

Let G be a permutation group, acting on a set Ω of size n . A subset B of Ω is a base for G if the pointwise stabilizer G ( B ) is trivial. Let b ( G ) be the minimal size of a base for G . A subgroup G of Sym ( n ) is large base if there exist integers m and r ≥ 1 such that Alt ( m ) r ⊴ G ≤ Sym (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2022, Vol.198 (2), p.411-443
Hauptverfasser: Moscatiello, Mariapia, Roney-Dougal, Colva M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a permutation group, acting on a set Ω of size n . A subset B of Ω is a base for G if the pointwise stabilizer G ( B ) is trivial. Let b ( G ) be the minimal size of a base for G . A subgroup G of Sym ( n ) is large base if there exist integers m and r ≥ 1 such that Alt ( m ) r ⊴ G ≤ Sym ( m ) ≀ Sym ( r ) , where the action of Sym ( m ) is on k -element subsets of { 1 , ⋯ , m } and the wreath product acts with product action. In this paper we prove that if G is primitive and not large base, then either G is the Mathieu group M 24 in its natural action on 24 points, or b ( G ) ≤ ⌈ log n ⌉ + 1 . Furthermore, we show that there are infinitely many primitive groups G that are not large base for which b ( G ) > log n + 1 , so our bound is optimal.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-021-01599-5