Inequalities between overpartition ranks for all moduli
In this paper we give a full description of the inequalities that can occur between overpartition ranks modulo c ≥ 2 . If N ¯ ( a , c , n ) denotes the number of overpartitions of n with rank congruent to a modulo c , we prove that for any c ≥ 7 and 0 ≤ a < b ≤ c 2 we have N ¯ ( a , c , n ) >...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-06, Vol.58 (2), p.463-489 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give a full description of the inequalities that can occur between overpartition ranks modulo
c
≥
2
.
If
N
¯
(
a
,
c
,
n
)
denotes the number of overpartitions of
n
with rank congruent to
a
modulo
c
, we prove that for any
c
≥
7
and
0
≤
a
<
b
≤
c
2
we have
N
¯
(
a
,
c
,
n
)
>
N
¯
(
b
,
c
,
n
)
for
n
large enough. That the sign of the rank differences
N
¯
(
a
,
c
,
n
)
-
N
¯
(
b
,
c
,
n
)
depends on the residue class of
n
modulo
c
in the case of small moduli, such as
c
=
6
,
is known due to the work of Ji et al. (J Number Theory 184:235–269, 2018) and Ciolan (Int J Number Theory 16(1):121–143, 2020). We show that the same behavior holds for
c
∈
{
2
,
3
,
4
,
5
}
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-021-00436-5 |