HCMU Surfaces and Weingarten Surfaces

A non-CSC extremal Kähler metric with finite singularities on a compact Riemann surface is often called HCMU metric. In Peng and Wu (Results Math 75:133, 2020) the authors proved that an HCMU metric can be locally isometrically imbedded into R 3 as a Weingarten surface. In this paper, we will give a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-07, Vol.32 (7), Article 199
Hauptverfasser: Wei, Zhiqiang, Wu, Yingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-CSC extremal Kähler metric with finite singularities on a compact Riemann surface is often called HCMU metric. In Peng and Wu (Results Math 75:133, 2020) the authors proved that an HCMU metric can be locally isometrically imbedded into R 3 as a Weingarten surface. In this paper, we will give a classification of local isometric immersions into R 3 as Weingarten surfaces of an HCMU metric.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-022-00933-z