HCMU Surfaces and Weingarten Surfaces
A non-CSC extremal Kähler metric with finite singularities on a compact Riemann surface is often called HCMU metric. In Peng and Wu (Results Math 75:133, 2020) the authors proved that an HCMU metric can be locally isometrically imbedded into R 3 as a Weingarten surface. In this paper, we will give a...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-07, Vol.32 (7), Article 199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-CSC extremal Kähler metric with finite singularities on a compact Riemann surface is often called HCMU metric. In Peng and Wu (Results Math 75:133, 2020) the authors proved that an HCMU metric can be locally isometrically imbedded into
R
3
as a Weingarten surface. In this paper, we will give a classification of local isometric immersions into
R
3
as Weingarten surfaces of an HCMU metric. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-022-00933-z |