Rooted maximum agreement supertrees

Given a set $\T$ of rooted, unordered trees, where each $T_i \in \T$ is distinctly leaf-labeled by a set $\Lambda(T_i)$ and where the sets $\Lambda(T_i)$ may overlap, the maximum agreement supertree problem~(MASP) is to construct a distinctly leaf-labeled tree $Q$ with leaf set $\Lambda(Q) \subseteq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2005-12, Vol.43 (4), p.293-307
Hauptverfasser: JANSSON, Jesper, NG, Joseph H.-K, SADAKANE, Kunihiko, SUNG, Wing-Kin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set $\T$ of rooted, unordered trees, where each $T_i \in \T$ is distinctly leaf-labeled by a set $\Lambda(T_i)$ and where the sets $\Lambda(T_i)$ may overlap, the maximum agreement supertree problem~(MASP) is to construct a distinctly leaf-labeled tree $Q$ with leaf set $\Lambda(Q) \subseteq $\cup$_{T_i \in \T} \Lambda(T_i)$ such that $|\Lambda(Q)|$ is maximized and for each $T_i \in \T$, the topological restriction of $T_i$ to $\Lambda(Q)$ is isomorphic to the topological restriction of $Q$ to $\Lambda(T_i)$. Let $n = \left| $\cup$_{T_i \in \T} \Lambda(T_i)\right|$, $k = |\T|$, and $D = \max_{T_i \in \T}\{\deg(T_i)\}$. We first show that MASP with $k = 2$ can be solved in $O(\sqrt{D} n \log (2n/D))$ time, which is $O(n \log n)$ when $D = O(1)$ and $O(n^{1.5})$ when $D$ is unrestricted. We then present an algorithm for MASP with $D = 2$ whose running time is polynomial if $k = O(1)$. On the other hand, we prove that MASP is NP-hard for any fixed $k \geq 3$ when $D$ is unrestricted, and also NP-hard for any fixed $D \geq 2$ when $k$ is unrestricted even if each input tree is required to contain at most three leaves. Finally, we describe a polynomial-time $(n/\!\log n)$-approximation algorithm for MASP.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-004-1147-5