Rate of Convergence of Generalized Hermite–PadéApproximants of Nikishin Systems
We study the rate of convergence of interpolating simultaneous rational approximations with partially prescribed poles to so-called Nikishin systems of functions. To this end, a vector equilibrium problem in the presence of a vector external field is solved which is used to describe the asymptotic b...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2006-01, Vol.23 (2), p.165-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the rate of convergence of interpolating simultaneous rational approximations with partially prescribed poles to so-called Nikishin systems of functions. To this end, a vector equilibrium problem in the presence of a vector external field is solved which is used to describe the asymptotic behavior of the corresponding second-type functions which appear. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-004-0582-5 |