Rate of Convergence of Generalized Hermite–PadéApproximants of Nikishin Systems

We study the rate of convergence of interpolating simultaneous rational approximations with partially prescribed poles to so-called Nikishin systems of functions. To this end, a vector equilibrium problem in the presence of a vector external field is solved which is used to describe the asymptotic b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation 2006-01, Vol.23 (2), p.165-196
Hauptverfasser: Fidalgo, Prieto U, López, Lagomasino G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the rate of convergence of interpolating simultaneous rational approximations with partially prescribed poles to so-called Nikishin systems of functions. To this end, a vector equilibrium problem in the presence of a vector external field is solved which is used to describe the asymptotic behavior of the corresponding second-type functions which appear.
ISSN:0176-4276
1432-0940
DOI:10.1007/s00365-004-0582-5