On metastability in FPU

We present an analytical study of the Fermi–Pasta–Ulam (FPU) α–model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with one low frequency Fourier mode excited. We show that, correspondingly, a pair of KdV equations constitute the resonant normal form of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2006-06, Vol.264 (2), p.539-561
Hauptverfasser: BAMBUSI, Dario, PONNO, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an analytical study of the Fermi–Pasta–Ulam (FPU) α–model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with one low frequency Fourier mode excited. We show that, correspondingly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phenomenon. More precisely, we show that the time average of the modal energy spectrum rapidly attains a well defined distribution corresponding to a packet of low frequencies modes. Subsequently, the distribution remains unchanged up to the time scales of validity of our approximation. The phenomenon is controlled by the specific energy.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-005-1488-1