Abrikosov lattices in finite domains
In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-Landau equations. Abrikosov's analysis assumes periodic boundary conditions, which are very different from the natural boundary conditions the minimizer of the Ginzburg-Landau energy functional should satisfy....
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2006-03, Vol.262 (3), p.677-702 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-Landau equations. Abrikosov's analysis assumes periodic boundary conditions, which are very different from the natural boundary conditions the minimizer of the Ginzburg-Landau energy functional should satisfy. In the present work we prove that the global minimizer of the fully non-linear functional can be approximated, in every rectangular subset of the domain, by one of the periodic solution to the linearized Ginzburg-Landau equations in the plane. Furthermore, we prove that the energy of this solution is close to the minimum of the energy over all Abrikosov's solutions in that rectangle. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-005-1463-x |