Abrikosov lattices in finite domains

In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-Landau equations. Abrikosov's analysis assumes periodic boundary conditions, which are very different from the natural boundary conditions the minimizer of the Ginzburg-Landau energy functional should satisfy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2006-03, Vol.262 (3), p.677-702
1. Verfasser: ALMOG, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-Landau equations. Abrikosov's analysis assumes periodic boundary conditions, which are very different from the natural boundary conditions the minimizer of the Ginzburg-Landau energy functional should satisfy. In the present work we prove that the global minimizer of the fully non-linear functional can be approximated, in every rectangular subset of the domain, by one of the periodic solution to the linearized Ginzburg-Landau equations in the plane. Furthermore, we prove that the energy of this solution is close to the minimum of the energy over all Abrikosov's solutions in that rectangle.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-005-1463-x