Robust game theory
We present a distribution-free model of incomplete-information games, both with and without private information, in which the players use a robust optimization approach to contend with payoff uncertainty. Our "robust game" model relaxes the assumptions of Harsanyi's Bayesian game mode...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2006-06, Vol.107 (1-2), p.231-273 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a distribution-free model of incomplete-information games, both with and without private information, in which the players use a robust optimization approach to contend with payoff uncertainty. Our "robust game" model relaxes the assumptions of Harsanyi's Bayesian game model, and provides an alternative distribution-free equilibrium concept, which we call "robust-optimization equilibrium," to that of the ex post equilibrium. We prove that the robust-optimization equilibria of an incomplete-information game subsume the ex post equilibria of the game and are, unlike the latter, guaranteed to exist when the game is finite and has bounded payoff uncertainty set. For arbitrary robust finite games with bounded polyhedral payoff uncertainty sets, we show that we can compute a robust-optimization equilibrium by methods analogous to those for identifying a Nash equilibrium of a finite game with complete information. In addition, we present computational results. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-005-0686-0 |