Study of variation of aerosol optical properties over a high altitude station in Indian Western Himalayan region, palampur using raman lidar system
A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N 2 ) channel a...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric chemistry 2022-06, Vol.79 (2), p.117-139 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N
2
) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ∼0.13 Mm
−1
sr
−1
to ∼7.25 Mm
−1
sr
−1
with mean value of 2.67 ± 0.82 Mm
−1
sr
−1
and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37 ± 0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72 ± 13sr, for 1-2 km (L2) altitude 55 ± 8sr, for 2-3 km (L3) 54 ± 15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8 ± 2.7% to 11.5 ± 1.9% with the mean value of 7 ± 1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources. |
---|---|
ISSN: | 0167-7764 1573-0662 |
DOI: | 10.1007/s10874-022-09432-5 |