Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit
The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a result, accurately characterizing the SER for practical devices is an important step in the design of quantum informati...
Gespeichert in:
Veröffentlicht in: | IEEE journal on multiscale and multiphysics computational techniques 2022, Vol.7, p.92-101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | IEEE journal on multiscale and multiphysics computational techniques |
container_volume | 7 |
creator | Roth, Thomas E. Chew, Weng C. |
description | The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a result, accurately characterizing the SER for practical devices is an important step in the design of quantum information processing devices. Here, we specifically focus on the experimentally popular platform of a transmon qubit, which is a kind of superconducting circuit qubit. Despite the importance of understanding the SER of these qubits, it is often determined using approximate circuit models or is inferred from measurements on a fabricated device. To improve the accuracy of predictions in the design process, it is better to use full-wave numerical methods that can make a minimal number of approximations in the description of practical systems. In this work, we show how this can be done with a recently developed field-based description of transmon qubits coupled to an electromagnetic environment. We validate our model by computing the SER for devices similar to those found in the literature that have been well-characterized experimentally. We further cross-validate our results by comparing them to simplified lumped element circuit and transmission line models as appropriate. |
doi_str_mv | 10.1109/JMMCT.2022.3169460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2663645964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9762964</ieee_id><sourcerecordid>2663645964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1b99392a43f814c09be99391a90f99058db9b447ae5b9a7f4cace22a50ad59d13</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsNT-AX1Z8Dl1b9lkHiW0XmgRa8XHZZNsbEqSjdmN0H9vYov4NMOZc87Ah9A1JXNKCdw9r9fJds4IY3NOJQhJztCE8QiCOKbh-b_9Es2c2xNCaMQYIWyCNsu-qoIP_W3w2vidzW1lPw_YW5zYuu29wX5n8FtrG68bY3uHF3XpXGkbvNHD1RZY422nG1cP0muflv4KXRS6cmZ2mlP0vlxsk8dg9fLwlNyvgoxz8AFNATgwLXgRU5ERSM0oUA2kACBhnKeQChFpE6ago0JkOjOM6ZDoPISc8im6Pfa2nf3qjfNqb_uuGV4qJiWXIgQpBhc7urLOOteZQrVdWevuoChRIz71i0-N-NQJ3xC6OYZKY8xfACLJxsofgQprKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663645964</pqid></control><display><type>article</type><title>Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit</title><source>IEEE Electronic Library (IEL)</source><creator>Roth, Thomas E. ; Chew, Weng C.</creator><creatorcontrib>Roth, Thomas E. ; Chew, Weng C.</creatorcontrib><description>The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a result, accurately characterizing the SER for practical devices is an important step in the design of quantum information processing devices. Here, we specifically focus on the experimentally popular platform of a transmon qubit, which is a kind of superconducting circuit qubit. Despite the importance of understanding the SER of these qubits, it is often determined using approximate circuit models or is inferred from measurements on a fabricated device. To improve the accuracy of predictions in the design process, it is better to use full-wave numerical methods that can make a minimal number of approximations in the description of practical systems. In this work, we show how this can be done with a recently developed field-based description of transmon qubits coupled to an electromagnetic environment. We validate our model by computing the SER for devices similar to those found in the literature that have been well-characterized experimentally. We further cross-validate our results by comparing them to simplified lumped element circuit and transmission line models as appropriate.</description><identifier>ISSN: 2379-8815</identifier><identifier>EISSN: 2379-8815</identifier><identifier>DOI: 10.1109/JMMCT.2022.3169460</identifier><identifier>CODEN: IJMMOP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit quantum electrodynamics ; Circuits ; computational electromagnetics ; Computers ; Data processing ; Electromagnetics ; Figure of merit ; Integrated circuit modeling ; Josephson junctions ; Numerical methods ; Quantum computing ; Quantum phenomena ; Qubit ; Qubits (quantum computing) ; Spontaneous emission ; spontaneous emission rate ; Superconducting transmission lines ; Transmission lines ; transmon qubit</subject><ispartof>IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.92-101</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1b99392a43f814c09be99391a90f99058db9b447ae5b9a7f4cace22a50ad59d13</citedby><cites>FETCH-LOGICAL-c339t-1b99392a43f814c09be99391a90f99058db9b447ae5b9a7f4cace22a50ad59d13</cites><orcidid>0000-0001-5771-4205 ; 0000-0002-3846-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9762964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9762964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roth, Thomas E.</creatorcontrib><creatorcontrib>Chew, Weng C.</creatorcontrib><title>Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit</title><title>IEEE journal on multiscale and multiphysics computational techniques</title><addtitle>JMMCT</addtitle><description>The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a result, accurately characterizing the SER for practical devices is an important step in the design of quantum information processing devices. Here, we specifically focus on the experimentally popular platform of a transmon qubit, which is a kind of superconducting circuit qubit. Despite the importance of understanding the SER of these qubits, it is often determined using approximate circuit models or is inferred from measurements on a fabricated device. To improve the accuracy of predictions in the design process, it is better to use full-wave numerical methods that can make a minimal number of approximations in the description of practical systems. In this work, we show how this can be done with a recently developed field-based description of transmon qubits coupled to an electromagnetic environment. We validate our model by computing the SER for devices similar to those found in the literature that have been well-characterized experimentally. We further cross-validate our results by comparing them to simplified lumped element circuit and transmission line models as appropriate.</description><subject>Circuit quantum electrodynamics</subject><subject>Circuits</subject><subject>computational electromagnetics</subject><subject>Computers</subject><subject>Data processing</subject><subject>Electromagnetics</subject><subject>Figure of merit</subject><subject>Integrated circuit modeling</subject><subject>Josephson junctions</subject><subject>Numerical methods</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Spontaneous emission</subject><subject>spontaneous emission rate</subject><subject>Superconducting transmission lines</subject><subject>Transmission lines</subject><subject>transmon qubit</subject><issn>2379-8815</issn><issn>2379-8815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLw0AQhRdRsNT-AX1Z8Dl1b9lkHiW0XmgRa8XHZZNsbEqSjdmN0H9vYov4NMOZc87Ah9A1JXNKCdw9r9fJds4IY3NOJQhJztCE8QiCOKbh-b_9Es2c2xNCaMQYIWyCNsu-qoIP_W3w2vidzW1lPw_YW5zYuu29wX5n8FtrG68bY3uHF3XpXGkbvNHD1RZY422nG1cP0muflv4KXRS6cmZ2mlP0vlxsk8dg9fLwlNyvgoxz8AFNATgwLXgRU5ERSM0oUA2kACBhnKeQChFpE6ago0JkOjOM6ZDoPISc8im6Pfa2nf3qjfNqb_uuGV4qJiWXIgQpBhc7urLOOteZQrVdWevuoChRIz71i0-N-NQJ3xC6OYZKY8xfACLJxsofgQprKg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Roth, Thomas E.</creator><creator>Chew, Weng C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5771-4205</orcidid><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid></search><sort><creationdate>2022</creationdate><title>Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit</title><author>Roth, Thomas E. ; Chew, Weng C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1b99392a43f814c09be99391a90f99058db9b447ae5b9a7f4cace22a50ad59d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuit quantum electrodynamics</topic><topic>Circuits</topic><topic>computational electromagnetics</topic><topic>Computers</topic><topic>Data processing</topic><topic>Electromagnetics</topic><topic>Figure of merit</topic><topic>Integrated circuit modeling</topic><topic>Josephson junctions</topic><topic>Numerical methods</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Spontaneous emission</topic><topic>spontaneous emission rate</topic><topic>Superconducting transmission lines</topic><topic>Transmission lines</topic><topic>transmon qubit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Thomas E.</creatorcontrib><creatorcontrib>Chew, Weng C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roth, Thomas E.</au><au>Chew, Weng C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit</atitle><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle><stitle>JMMCT</stitle><date>2022</date><risdate>2022</risdate><volume>7</volume><spage>92</spage><epage>101</epage><pages>92-101</pages><issn>2379-8815</issn><eissn>2379-8815</eissn><coden>IJMMOP</coden><abstract>The spontaneous emission rate (SER) is an important figure of merit for any quantum bit (qubit), as it can play a significant role in the control and decoherence of the qubit. As a result, accurately characterizing the SER for practical devices is an important step in the design of quantum information processing devices. Here, we specifically focus on the experimentally popular platform of a transmon qubit, which is a kind of superconducting circuit qubit. Despite the importance of understanding the SER of these qubits, it is often determined using approximate circuit models or is inferred from measurements on a fabricated device. To improve the accuracy of predictions in the design process, it is better to use full-wave numerical methods that can make a minimal number of approximations in the description of practical systems. In this work, we show how this can be done with a recently developed field-based description of transmon qubits coupled to an electromagnetic environment. We validate our model by computing the SER for devices similar to those found in the literature that have been well-characterized experimentally. We further cross-validate our results by comparing them to simplified lumped element circuit and transmission line models as appropriate.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMMCT.2022.3169460</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5771-4205</orcidid><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8815 |
ispartof | IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.92-101 |
issn | 2379-8815 2379-8815 |
language | eng |
recordid | cdi_proquest_journals_2663645964 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit quantum electrodynamics Circuits computational electromagnetics Computers Data processing Electromagnetics Figure of merit Integrated circuit modeling Josephson junctions Numerical methods Quantum computing Quantum phenomena Qubit Qubits (quantum computing) Spontaneous emission spontaneous emission rate Superconducting transmission lines Transmission lines transmon qubit |
title | Full-Wave Methodology to Compute the Spontaneous Emission Rate of a Transmon Qubit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-Wave%20Methodology%20to%20Compute%20the%20Spontaneous%20Emission%20Rate%20of%20a%20Transmon%20Qubit&rft.jtitle=IEEE%20journal%20on%20multiscale%20and%20multiphysics%20computational%20techniques&rft.au=Roth,%20Thomas%20E.&rft.date=2022&rft.volume=7&rft.spage=92&rft.epage=101&rft.pages=92-101&rft.issn=2379-8815&rft.eissn=2379-8815&rft.coden=IJMMOP&rft_id=info:doi/10.1109/JMMCT.2022.3169460&rft_dat=%3Cproquest_RIE%3E2663645964%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663645964&rft_id=info:pmid/&rft_ieee_id=9762964&rfr_iscdi=true |