BEAT: Blockchain-Enabled Accountable and Transparent Infrastructure Sharing in 6G and Beyond

It is widely expected that future networks of 6G and beyond will substantially improve on 5G. Technologies such as Internet of Skills and Industry 4.0 will become stable and viable, as a direct consequence of networks that offer sustained and reliable mobile performance levels. The primary challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.48660-48672
Hauptverfasser: Faisal, Tooba, Dohler, Mischa, Mangiante, Simone, Lopez, Diego R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is widely expected that future networks of 6G and beyond will substantially improve on 5G. Technologies such as Internet of Skills and Industry 4.0 will become stable and viable, as a direct consequence of networks that offer sustained and reliable mobile performance levels. The primary challenges for future technologies are not just low-latency and high-bandwidth. The more critical problem Mobile Service Providers (MSPs) will face will be in balancing the inflated demands of network connections and customers' trust in the network service. That is, being able to interconnect billions of unique devices while adhering to the agreed terms of Service Level Agreements (SLAs). To meet these targets, it is self-evident that MSPs cannot operate in a solitary environment. They must enable cooperation among themselves in a manner that ensures trust, both between themselves as well as with customers. In this study, we present the BEAT ( B lockchain- E nabled A ccountable and T ransparent) Infrastructure Sharing architecture. BEAT exploits the inherent properties of permissioned type of distributed ledger technology (i.e., permissioned distributed ledgers) to deliver on accountability and transparency metrics whenever infrastructure needs to be shared between providers. We also propose a lightweight method that enables device-level accountability. BEAT has been designed to be deployable directly as only minor software upgrades to network devices such as routers. Our simulations on a resource-limited device show that BEAT adds only a few seconds of overhead processing time - with the latest state-of-the-art network devices, we can reasonably anticipate much lower overheads.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3171984