String and Band Complexes Over String Almost Gentle Algebras
We give a combinatorial description of a family of indecomposable objects in the bounded derived categories of two new classes of algebras: string almost gentle (SAG) algebras and SUMP algebras. These indecomposable objects are, up to isomorphism, the string and band complexes introduced by Bekkert...
Gespeichert in:
Veröffentlicht in: | Applied categorical structures 2022-06, Vol.30 (3), p.417-452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a combinatorial description of a family of indecomposable objects in the bounded derived categories of two new classes of algebras: string almost gentle (SAG) algebras and SUMP algebras. These indecomposable objects are, up to isomorphism, the string and band complexes introduced by Bekkert and Merklen (Algebras Rep Theory 6:285–302, 2003). With this description, we give a necessary and sufficient condition for a given string complex to have infinite minimal projective resolution and we extend this condition for the case of string algebras. Using this characterization we establish a sufficient condition for a string almost gentle algebra (or a string algebra) to have infinite global dimension. |
---|---|
ISSN: | 0927-2852 1572-9095 |
DOI: | 10.1007/s10485-021-09661-x |