Effect of substrate temperature on microstructure and mechanical properties of TiAl alloy fabricated using the twin-wire plasma arc additive manufacturing system

TiAl alloy becomes a promising high-temperature structural material due to excellent mechanical properties at elevated temperature. However, the inherent brittleness makes it difficult to be processed by traditional technologies. Therefore, an innovative twin-wire plasma arc additive manufacturing (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-05, Vol.57 (19), p.8940-8955
Hauptverfasser: Wang, Lin, Zhou, Wenlu, Shen, Chen, Zhang, Yuelong, Li, Fang, Ding, Yuhan, Xin, Jianwen, Wang, Baosen, Hua, Xueming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TiAl alloy becomes a promising high-temperature structural material due to excellent mechanical properties at elevated temperature. However, the inherent brittleness makes it difficult to be processed by traditional technologies. Therefore, an innovative twin-wire plasma arc additive manufacturing (TW-PAAM) process is developed to fabricate TiAl alloy. Substrate heating is indispensable during additively manufactured TiAl alloy, which can alleviate its crack tendency. In this paper, crack-free TiAl alloy samples are fabricated using TW-PAAM, and the effect of substrate temperature (560, 620 and 680 °C) on as-deposited TiAl alloy is investigated in detail. With the increase in substrate temperature, microstructural lamellar spacing and colony size exhibit the tendency of increase. Also, α 2 phase content, recrystallization degree and high Schmid factor frequency present the decrease tendency. These variations of microstructure characteristics further lead to the decrease in both microhardness and tensile properties of the deposit. These findings provide a valuable reference for optimizing microstructures and mechanical properties of additively manufactured TiAl alloys.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-022-07228-2