Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization

A measure of insulation film floating on the water surface was put forward to solve the problems of ice damage to water delivery canals during the winter operation period in cold regions. Firstly, a circulating flume test system was designed in an indoor radiation- and temperature-controlled environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-05, Vol.14 (9), p.5720
Hauptverfasser: Wang, Yi, Zhang, Chen, Wang, Zhengzhong, Zhu, Xun, Cai, Zhengyin, Jiang, Haoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 5720
container_title Sustainability
container_volume 14
creator Wang, Yi
Zhang, Chen
Wang, Zhengzhong
Zhu, Xun
Cai, Zhengyin
Jiang, Haoyuan
description A measure of insulation film floating on the water surface was put forward to solve the problems of ice damage to water delivery canals during the winter operation period in cold regions. Firstly, a circulating flume test system was designed in an indoor radiation- and temperature-controlled environment. Secondly, five groups of comparative tests were carried out according to different application scenarios. Lastly, combined with the experimental data, the radiative degree-day method was used to calculate the ice thickness growth under the film. The results show that, in a sufficient radiation condition, a membrane can effectively melt the canal ice and prevent ice formation. In a limited radiation condition, a membrane can delay the ice sealing time and reduce the ice thickness, avoiding ice thrust damage to canal lining. The ice thickness growth formula can predict the development process of water and ice thickness under this technique. The research provides certain theoretical guidance and practical significance for the combination of solar thermal technology and water delivery engineering in cold regions.
doi_str_mv 10.3390/su14095720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663120259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663120259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-958bc1278601cce898b8b343ce4a12e28f7e0cdbfc9ceb82a017d1825e76d5683</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOZe_AQB38Rq_qxt8jincwNhMDd8LGl66zKyZiapMP3ydk7Q-3LPhXN_HA5Cl5Tcci7JXWjpkMg0Z-QE9RjJaUJJSk7_6XM0CGFDuuGcSpr10NcCAiiv19g1eGLsFs-a0FoVTXcvQa8bZ93bHtfO45GPpjbaKHuD5zto8KuK4PEDWPMBfo_HqlE24HsVoDrgXpxVHk9BRbxQlTkyV9FY8_mjL9BZ3T3A4Hf30WryuBxPk-f502w8ek40Y2lMZCpKTVkuMkK1BiFFKUo-5BqGijJgos6B6KqstdRQCqYIzSsqWAp5VqWZ4H10deTuvHtvIcRi41p_yFqwLOOUEZbKznV9dGnvQvBQFztvtsrvC0qKQ7_FX7_8G-0Kbac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663120259</pqid></control><display><type>article</type><title>Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Wang, Yi ; Zhang, Chen ; Wang, Zhengzhong ; Zhu, Xun ; Cai, Zhengyin ; Jiang, Haoyuan</creator><creatorcontrib>Wang, Yi ; Zhang, Chen ; Wang, Zhengzhong ; Zhu, Xun ; Cai, Zhengyin ; Jiang, Haoyuan</creatorcontrib><description>A measure of insulation film floating on the water surface was put forward to solve the problems of ice damage to water delivery canals during the winter operation period in cold regions. Firstly, a circulating flume test system was designed in an indoor radiation- and temperature-controlled environment. Secondly, five groups of comparative tests were carried out according to different application scenarios. Lastly, combined with the experimental data, the radiative degree-day method was used to calculate the ice thickness growth under the film. The results show that, in a sufficient radiation condition, a membrane can effectively melt the canal ice and prevent ice formation. In a limited radiation condition, a membrane can delay the ice sealing time and reduce the ice thickness, avoiding ice thrust damage to canal lining. The ice thickness growth formula can predict the development process of water and ice thickness under this technique. The research provides certain theoretical guidance and practical significance for the combination of solar thermal technology and water delivery engineering in cold regions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14095720</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Canal linings ; Cold ; Cold regions ; Efficiency ; Flow velocity ; Heat ; Ice ; Ice cover ; Ice formation ; Ice thickness ; Indoor environments ; Insulation ; Membranes ; Radiation ; Radiation measurement ; Sensors ; Solar heating ; Technology ; Thermal radiation ; Thickness ; Thin films ; Water damage ; Water delivery ; Water supply ; Water temperature</subject><ispartof>Sustainability, 2022-05, Vol.14 (9), p.5720</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-958bc1278601cce898b8b343ce4a12e28f7e0cdbfc9ceb82a017d1825e76d5683</citedby><cites>FETCH-LOGICAL-c225t-958bc1278601cce898b8b343ce4a12e28f7e0cdbfc9ceb82a017d1825e76d5683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Wang, Zhengzhong</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Cai, Zhengyin</creatorcontrib><creatorcontrib>Jiang, Haoyuan</creatorcontrib><title>Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization</title><title>Sustainability</title><description>A measure of insulation film floating on the water surface was put forward to solve the problems of ice damage to water delivery canals during the winter operation period in cold regions. Firstly, a circulating flume test system was designed in an indoor radiation- and temperature-controlled environment. Secondly, five groups of comparative tests were carried out according to different application scenarios. Lastly, combined with the experimental data, the radiative degree-day method was used to calculate the ice thickness growth under the film. The results show that, in a sufficient radiation condition, a membrane can effectively melt the canal ice and prevent ice formation. In a limited radiation condition, a membrane can delay the ice sealing time and reduce the ice thickness, avoiding ice thrust damage to canal lining. The ice thickness growth formula can predict the development process of water and ice thickness under this technique. The research provides certain theoretical guidance and practical significance for the combination of solar thermal technology and water delivery engineering in cold regions.</description><subject>Canal linings</subject><subject>Cold</subject><subject>Cold regions</subject><subject>Efficiency</subject><subject>Flow velocity</subject><subject>Heat</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Ice thickness</subject><subject>Indoor environments</subject><subject>Insulation</subject><subject>Membranes</subject><subject>Radiation</subject><subject>Radiation measurement</subject><subject>Sensors</subject><subject>Solar heating</subject><subject>Technology</subject><subject>Thermal radiation</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Water damage</subject><subject>Water delivery</subject><subject>Water supply</subject><subject>Water temperature</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkF9LwzAUxYMoOOZe_AQB38Rq_qxt8jincwNhMDd8LGl66zKyZiapMP3ydk7Q-3LPhXN_HA5Cl5Tcci7JXWjpkMg0Z-QE9RjJaUJJSk7_6XM0CGFDuuGcSpr10NcCAiiv19g1eGLsFs-a0FoVTXcvQa8bZ93bHtfO45GPpjbaKHuD5zto8KuK4PEDWPMBfo_HqlE24HsVoDrgXpxVHk9BRbxQlTkyV9FY8_mjL9BZ3T3A4Hf30WryuBxPk-f502w8ek40Y2lMZCpKTVkuMkK1BiFFKUo-5BqGijJgos6B6KqstdRQCqYIzSsqWAp5VqWZ4H10deTuvHtvIcRi41p_yFqwLOOUEZbKznV9dGnvQvBQFztvtsrvC0qKQ7_FX7_8G-0Kbac</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Wang, Yi</creator><creator>Zhang, Chen</creator><creator>Wang, Zhengzhong</creator><creator>Zhu, Xun</creator><creator>Cai, Zhengyin</creator><creator>Jiang, Haoyuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220509</creationdate><title>Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization</title><author>Wang, Yi ; Zhang, Chen ; Wang, Zhengzhong ; Zhu, Xun ; Cai, Zhengyin ; Jiang, Haoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-958bc1278601cce898b8b343ce4a12e28f7e0cdbfc9ceb82a017d1825e76d5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Canal linings</topic><topic>Cold</topic><topic>Cold regions</topic><topic>Efficiency</topic><topic>Flow velocity</topic><topic>Heat</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Ice thickness</topic><topic>Indoor environments</topic><topic>Insulation</topic><topic>Membranes</topic><topic>Radiation</topic><topic>Radiation measurement</topic><topic>Sensors</topic><topic>Solar heating</topic><topic>Technology</topic><topic>Thermal radiation</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Water damage</topic><topic>Water delivery</topic><topic>Water supply</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Wang, Zhengzhong</creatorcontrib><creatorcontrib>Zhu, Xun</creatorcontrib><creatorcontrib>Cai, Zhengyin</creatorcontrib><creatorcontrib>Jiang, Haoyuan</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Zhang, Chen</au><au>Wang, Zhengzhong</au><au>Zhu, Xun</au><au>Cai, Zhengyin</au><au>Jiang, Haoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization</atitle><jtitle>Sustainability</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>5720</spage><pages>5720-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>A measure of insulation film floating on the water surface was put forward to solve the problems of ice damage to water delivery canals during the winter operation period in cold regions. Firstly, a circulating flume test system was designed in an indoor radiation- and temperature-controlled environment. Secondly, five groups of comparative tests were carried out according to different application scenarios. Lastly, combined with the experimental data, the radiative degree-day method was used to calculate the ice thickness growth under the film. The results show that, in a sufficient radiation condition, a membrane can effectively melt the canal ice and prevent ice formation. In a limited radiation condition, a membrane can delay the ice sealing time and reduce the ice thickness, avoiding ice thrust damage to canal lining. The ice thickness growth formula can predict the development process of water and ice thickness under this technique. The research provides certain theoretical guidance and practical significance for the combination of solar thermal technology and water delivery engineering in cold regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14095720</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-05, Vol.14 (9), p.5720
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2663120259
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Canal linings
Cold
Cold regions
Efficiency
Flow velocity
Heat
Ice
Ice cover
Ice formation
Ice thickness
Indoor environments
Insulation
Membranes
Radiation
Radiation measurement
Sensors
Solar heating
Technology
Thermal radiation
Thickness
Thin films
Water damage
Water delivery
Water supply
Water temperature
title Research on Film Insulation Technology for Artificial, Open Water Delivery Canals Based on Solar Heat Radiation Utilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Film%20Insulation%20Technology%20for%20Artificial,%20Open%20Water%20Delivery%20Canals%20Based%20on%20Solar%20Heat%20Radiation%20Utilization&rft.jtitle=Sustainability&rft.au=Wang,%20Yi&rft.date=2022-05-09&rft.volume=14&rft.issue=9&rft.spage=5720&rft.pages=5720-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14095720&rft_dat=%3Cproquest_cross%3E2663120259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663120259&rft_id=info:pmid/&rfr_iscdi=true