Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin
The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focus...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-05, Vol.14 (9), p.1426 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1426 |
container_title | Water (Basel) |
container_volume | 14 |
creator | Sok, Ty Ich, Ilan Tes, Davin Chan, Ratboren Try, Sophal Song, Layheang Ket, Pinnara Khem, Sothea Oeurng, Chantha |
description | The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used. |
doi_str_mv | 10.3390/w14091426 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2663100832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793270056</galeid><sourcerecordid>A793270056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</originalsourceid><addsrcrecordid>eNpNUUtPwzAMjhBITGMH_kEkThwKeTbtcVSDTZqEBL1XaZp0GW1T0k6wK7-cVEOAffDr-2zLBuAaoztKU3T_gRlKMSPxGZgRJGjEGMPn__xLsBiGPQrC0iThaAa-sp3sag1tB9fHyrvG1VbJBr7o2rZ6gLKr4Opz9HoKjHctHHcabtpeqhE6A7PGtnLU8K_NVN9KX-thhLm35WGU_jhBp0LuukbDV9kHyJuGD3Kw3RW4MLIZ9OLHzkH-uMqzdbR9ftpky22kCIvjSCouSpVgLBBVRBKeMFzxVBpuBFKGyhQjLWipOCUJE0phlZaJMoLiKuaczsHNqW3v3fshbFfs3cF3YWJB4phihBJKAuruhKplowvbGTd6qYJWurXKddrYkF-KlBKBEI8D4fZEUN4Ng9em6H04iT8WGBXTV4rfr9Bvn-F9WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100832</pqid></control><display><type>article</type><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</creator><creatorcontrib>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</creatorcontrib><description>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14091426</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Annual precipitation ; Climate change ; Climate models ; Climatic changes ; Dry season ; Ecosystems ; Emissions ; Evapotranspiration ; Geospatial data ; Greenhouse effect ; Groundwater ; Groundwater flow ; Groundwater runoff ; Hydrologic cycle ; Hydrologic models ; Hydrologic regime ; Hydrology ; Lake basins ; Lakes ; Minimum flow ; Precipitation ; Rain ; Rainfall ; Rainy season ; River basins ; Runoff ; Soil water ; Surface runoff ; Tributaries ; Water flow ; Water yield</subject><ispartof>Water (Basel), 2022-05, Vol.14 (9), p.1426</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</citedby><cites>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</cites><orcidid>0000-0001-7185-698X ; 0000-0002-6963-4314 ; 0000-0001-9293-1029 ; 0000-0003-4736-4568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sok, Ty</creatorcontrib><creatorcontrib>Ich, Ilan</creatorcontrib><creatorcontrib>Tes, Davin</creatorcontrib><creatorcontrib>Chan, Ratboren</creatorcontrib><creatorcontrib>Try, Sophal</creatorcontrib><creatorcontrib>Song, Layheang</creatorcontrib><creatorcontrib>Ket, Pinnara</creatorcontrib><creatorcontrib>Khem, Sothea</creatorcontrib><creatorcontrib>Oeurng, Chantha</creatorcontrib><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><title>Water (Basel)</title><description>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</description><subject>Analysis</subject><subject>Annual precipitation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic changes</subject><subject>Dry season</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Evapotranspiration</subject><subject>Geospatial data</subject><subject>Greenhouse effect</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Groundwater runoff</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrologic regime</subject><subject>Hydrology</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Minimum flow</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainy season</subject><subject>River basins</subject><subject>Runoff</subject><subject>Soil water</subject><subject>Surface runoff</subject><subject>Tributaries</subject><subject>Water flow</subject><subject>Water yield</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUUtPwzAMjhBITGMH_kEkThwKeTbtcVSDTZqEBL1XaZp0GW1T0k6wK7-cVEOAffDr-2zLBuAaoztKU3T_gRlKMSPxGZgRJGjEGMPn__xLsBiGPQrC0iThaAa-sp3sag1tB9fHyrvG1VbJBr7o2rZ6gLKr4Opz9HoKjHctHHcabtpeqhE6A7PGtnLU8K_NVN9KX-thhLm35WGU_jhBp0LuukbDV9kHyJuGD3Kw3RW4MLIZ9OLHzkH-uMqzdbR9ftpky22kCIvjSCouSpVgLBBVRBKeMFzxVBpuBFKGyhQjLWipOCUJE0phlZaJMoLiKuaczsHNqW3v3fshbFfs3cF3YWJB4phihBJKAuruhKplowvbGTd6qYJWurXKddrYkF-KlBKBEI8D4fZEUN4Ng9em6H04iT8WGBXTV4rfr9Bvn-F9WQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Sok, Ty</creator><creator>Ich, Ilan</creator><creator>Tes, Davin</creator><creator>Chan, Ratboren</creator><creator>Try, Sophal</creator><creator>Song, Layheang</creator><creator>Ket, Pinnara</creator><creator>Khem, Sothea</creator><creator>Oeurng, Chantha</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7185-698X</orcidid><orcidid>https://orcid.org/0000-0002-6963-4314</orcidid><orcidid>https://orcid.org/0000-0001-9293-1029</orcidid><orcidid>https://orcid.org/0000-0003-4736-4568</orcidid></search><sort><creationdate>20220501</creationdate><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><author>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Annual precipitation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic changes</topic><topic>Dry season</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Evapotranspiration</topic><topic>Geospatial data</topic><topic>Greenhouse effect</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Groundwater runoff</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrologic regime</topic><topic>Hydrology</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Minimum flow</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainy season</topic><topic>River basins</topic><topic>Runoff</topic><topic>Soil water</topic><topic>Surface runoff</topic><topic>Tributaries</topic><topic>Water flow</topic><topic>Water yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sok, Ty</creatorcontrib><creatorcontrib>Ich, Ilan</creatorcontrib><creatorcontrib>Tes, Davin</creatorcontrib><creatorcontrib>Chan, Ratboren</creatorcontrib><creatorcontrib>Try, Sophal</creatorcontrib><creatorcontrib>Song, Layheang</creatorcontrib><creatorcontrib>Ket, Pinnara</creatorcontrib><creatorcontrib>Khem, Sothea</creatorcontrib><creatorcontrib>Oeurng, Chantha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sok, Ty</au><au>Ich, Ilan</au><au>Tes, Davin</au><au>Chan, Ratboren</au><au>Try, Sophal</au><au>Song, Layheang</au><au>Ket, Pinnara</au><au>Khem, Sothea</au><au>Oeurng, Chantha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</atitle><jtitle>Water (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1426</spage><pages>1426-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14091426</doi><orcidid>https://orcid.org/0000-0001-7185-698X</orcidid><orcidid>https://orcid.org/0000-0002-6963-4314</orcidid><orcidid>https://orcid.org/0000-0001-9293-1029</orcidid><orcidid>https://orcid.org/0000-0003-4736-4568</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2022-05, Vol.14 (9), p.1426 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2663100832 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Annual precipitation Climate change Climate models Climatic changes Dry season Ecosystems Emissions Evapotranspiration Geospatial data Greenhouse effect Groundwater Groundwater flow Groundwater runoff Hydrologic cycle Hydrologic models Hydrologic regime Hydrology Lake basins Lakes Minimum flow Precipitation Rain Rainfall Rainy season River basins Runoff Soil water Surface runoff Tributaries Water flow Water yield |
title | Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20in%20Hydrological%20Regimes%20and%20Extremes%20from%20the%20Impact%20of%20Climate%20Change%20in%20the%20Largest%20Tributary%20of%20the%20Tonle%20Sap%20Lake%20Basin&rft.jtitle=Water%20(Basel)&rft.au=Sok,%20Ty&rft.date=2022-05-01&rft.volume=14&rft.issue=9&rft.spage=1426&rft.pages=1426-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14091426&rft_dat=%3Cgale_proqu%3EA793270056%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100832&rft_id=info:pmid/&rft_galeid=A793270056&rfr_iscdi=true |