Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin

The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-05, Vol.14 (9), p.1426
Hauptverfasser: Sok, Ty, Ich, Ilan, Tes, Davin, Chan, Ratboren, Try, Sophal, Song, Layheang, Ket, Pinnara, Khem, Sothea, Oeurng, Chantha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1426
container_title Water (Basel)
container_volume 14
creator Sok, Ty
Ich, Ilan
Tes, Davin
Chan, Ratboren
Try, Sophal
Song, Layheang
Ket, Pinnara
Khem, Sothea
Oeurng, Chantha
description The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil & Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.
doi_str_mv 10.3390/w14091426
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2663100832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793270056</galeid><sourcerecordid>A793270056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</originalsourceid><addsrcrecordid>eNpNUUtPwzAMjhBITGMH_kEkThwKeTbtcVSDTZqEBL1XaZp0GW1T0k6wK7-cVEOAffDr-2zLBuAaoztKU3T_gRlKMSPxGZgRJGjEGMPn__xLsBiGPQrC0iThaAa-sp3sag1tB9fHyrvG1VbJBr7o2rZ6gLKr4Opz9HoKjHctHHcabtpeqhE6A7PGtnLU8K_NVN9KX-thhLm35WGU_jhBp0LuukbDV9kHyJuGD3Kw3RW4MLIZ9OLHzkH-uMqzdbR9ftpky22kCIvjSCouSpVgLBBVRBKeMFzxVBpuBFKGyhQjLWipOCUJE0phlZaJMoLiKuaczsHNqW3v3fshbFfs3cF3YWJB4phihBJKAuruhKplowvbGTd6qYJWurXKddrYkF-KlBKBEI8D4fZEUN4Ng9em6H04iT8WGBXTV4rfr9Bvn-F9WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100832</pqid></control><display><type>article</type><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</creator><creatorcontrib>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</creatorcontrib><description>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil &amp; Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14091426</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Annual precipitation ; Climate change ; Climate models ; Climatic changes ; Dry season ; Ecosystems ; Emissions ; Evapotranspiration ; Geospatial data ; Greenhouse effect ; Groundwater ; Groundwater flow ; Groundwater runoff ; Hydrologic cycle ; Hydrologic models ; Hydrologic regime ; Hydrology ; Lake basins ; Lakes ; Minimum flow ; Precipitation ; Rain ; Rainfall ; Rainy season ; River basins ; Runoff ; Soil water ; Surface runoff ; Tributaries ; Water flow ; Water yield</subject><ispartof>Water (Basel), 2022-05, Vol.14 (9), p.1426</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</citedby><cites>FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</cites><orcidid>0000-0001-7185-698X ; 0000-0002-6963-4314 ; 0000-0001-9293-1029 ; 0000-0003-4736-4568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sok, Ty</creatorcontrib><creatorcontrib>Ich, Ilan</creatorcontrib><creatorcontrib>Tes, Davin</creatorcontrib><creatorcontrib>Chan, Ratboren</creatorcontrib><creatorcontrib>Try, Sophal</creatorcontrib><creatorcontrib>Song, Layheang</creatorcontrib><creatorcontrib>Ket, Pinnara</creatorcontrib><creatorcontrib>Khem, Sothea</creatorcontrib><creatorcontrib>Oeurng, Chantha</creatorcontrib><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><title>Water (Basel)</title><description>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil &amp; Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</description><subject>Analysis</subject><subject>Annual precipitation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic changes</subject><subject>Dry season</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Evapotranspiration</subject><subject>Geospatial data</subject><subject>Greenhouse effect</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Groundwater runoff</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrologic regime</subject><subject>Hydrology</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Minimum flow</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainy season</subject><subject>River basins</subject><subject>Runoff</subject><subject>Soil water</subject><subject>Surface runoff</subject><subject>Tributaries</subject><subject>Water flow</subject><subject>Water yield</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUUtPwzAMjhBITGMH_kEkThwKeTbtcVSDTZqEBL1XaZp0GW1T0k6wK7-cVEOAffDr-2zLBuAaoztKU3T_gRlKMSPxGZgRJGjEGMPn__xLsBiGPQrC0iThaAa-sp3sag1tB9fHyrvG1VbJBr7o2rZ6gLKr4Opz9HoKjHctHHcabtpeqhE6A7PGtnLU8K_NVN9KX-thhLm35WGU_jhBp0LuukbDV9kHyJuGD3Kw3RW4MLIZ9OLHzkH-uMqzdbR9ftpky22kCIvjSCouSpVgLBBVRBKeMFzxVBpuBFKGyhQjLWipOCUJE0phlZaJMoLiKuaczsHNqW3v3fshbFfs3cF3YWJB4phihBJKAuruhKplowvbGTd6qYJWurXKddrYkF-KlBKBEI8D4fZEUN4Ng9em6H04iT8WGBXTV4rfr9Bvn-F9WQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Sok, Ty</creator><creator>Ich, Ilan</creator><creator>Tes, Davin</creator><creator>Chan, Ratboren</creator><creator>Try, Sophal</creator><creator>Song, Layheang</creator><creator>Ket, Pinnara</creator><creator>Khem, Sothea</creator><creator>Oeurng, Chantha</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7185-698X</orcidid><orcidid>https://orcid.org/0000-0002-6963-4314</orcidid><orcidid>https://orcid.org/0000-0001-9293-1029</orcidid><orcidid>https://orcid.org/0000-0003-4736-4568</orcidid></search><sort><creationdate>20220501</creationdate><title>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</title><author>Sok, Ty ; Ich, Ilan ; Tes, Davin ; Chan, Ratboren ; Try, Sophal ; Song, Layheang ; Ket, Pinnara ; Khem, Sothea ; Oeurng, Chantha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2466-ac57bc811703c2a25841d59af5f70cf3a910e73bc532847cc1c9b8cf731d6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Annual precipitation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic changes</topic><topic>Dry season</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Evapotranspiration</topic><topic>Geospatial data</topic><topic>Greenhouse effect</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Groundwater runoff</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrologic regime</topic><topic>Hydrology</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Minimum flow</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainy season</topic><topic>River basins</topic><topic>Runoff</topic><topic>Soil water</topic><topic>Surface runoff</topic><topic>Tributaries</topic><topic>Water flow</topic><topic>Water yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sok, Ty</creatorcontrib><creatorcontrib>Ich, Ilan</creatorcontrib><creatorcontrib>Tes, Davin</creatorcontrib><creatorcontrib>Chan, Ratboren</creatorcontrib><creatorcontrib>Try, Sophal</creatorcontrib><creatorcontrib>Song, Layheang</creatorcontrib><creatorcontrib>Ket, Pinnara</creatorcontrib><creatorcontrib>Khem, Sothea</creatorcontrib><creatorcontrib>Oeurng, Chantha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sok, Ty</au><au>Ich, Ilan</au><au>Tes, Davin</au><au>Chan, Ratboren</au><au>Try, Sophal</au><au>Song, Layheang</au><au>Ket, Pinnara</au><au>Khem, Sothea</au><au>Oeurng, Chantha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin</atitle><jtitle>Water (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>9</issue><spage>1426</spage><pages>1426-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The Tonle Sap Lake (TSL) Basins of the Lower Mekong are one of the world’s most productive ecosystems and have recently been disturbed by climate change. The SWAT (Soil &amp; Water Assessment Tool) hydrological model is utilized to investigate the effect of future climate scenarios. This study focused on two climate scenarios (RCP2.6 and RCP8.5) with three GCMs (GFDL-CM3, GISS-E2-R-CC, and IPSL-CM5A-MR) and their impact on the hydrological process and extremes in the Sen River Basin, the largest tributary of the TSL basin. The annual precipitation, surface runoff, lateral flow, groundwater flow, and total water yield are projected to decrease in both the near-future (2020–2040) and mid-future period (2050–2070), while actual evapotranspiration is projected to increase by 3.3% and 5.3%. Monthly precipitation is projected to increase by 11.2% during the rainy season and decrease by 7.5% during the dry season. Two climate models (GISS and IPSL model) lead to decreases in 1-day, 3-day, 7-day, 30-day, and 90-day maximum flows and minimum flows flow. Thus, the prediction results depend on the climate model used.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14091426</doi><orcidid>https://orcid.org/0000-0001-7185-698X</orcidid><orcidid>https://orcid.org/0000-0002-6963-4314</orcidid><orcidid>https://orcid.org/0000-0001-9293-1029</orcidid><orcidid>https://orcid.org/0000-0003-4736-4568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2022-05, Vol.14 (9), p.1426
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2663100832
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Annual precipitation
Climate change
Climate models
Climatic changes
Dry season
Ecosystems
Emissions
Evapotranspiration
Geospatial data
Greenhouse effect
Groundwater
Groundwater flow
Groundwater runoff
Hydrologic cycle
Hydrologic models
Hydrologic regime
Hydrology
Lake basins
Lakes
Minimum flow
Precipitation
Rain
Rainfall
Rainy season
River basins
Runoff
Soil water
Surface runoff
Tributaries
Water flow
Water yield
title Change in Hydrological Regimes and Extremes from the Impact of Climate Change in the Largest Tributary of the Tonle Sap Lake Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20in%20Hydrological%20Regimes%20and%20Extremes%20from%20the%20Impact%20of%20Climate%20Change%20in%20the%20Largest%20Tributary%20of%20the%20Tonle%20Sap%20Lake%20Basin&rft.jtitle=Water%20(Basel)&rft.au=Sok,%20Ty&rft.date=2022-05-01&rft.volume=14&rft.issue=9&rft.spage=1426&rft.pages=1426-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14091426&rft_dat=%3Cgale_proqu%3EA793270056%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663100832&rft_id=info:pmid/&rft_galeid=A793270056&rfr_iscdi=true