Physics-Guided Long Short-Term Memory Network for Streamflow and Flood Simulations in the Lancang–Mekong River Basin

A warming climate will intensify the water cycle, resulting in an exacerbation of water resources crises and flooding risks in the Lancang–Mekong River Basin (LMRB). The mitigation of these risks requires accurate streamflow and flood simulations. Process-based and data-driven hydrological models ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-05, Vol.14 (9), p.1429
Hauptverfasser: Liu, Binxiao, Tang, Qiuhong, Zhao, Gang, Gao, Liang, Shen, Chaopeng, Pan, Baoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A warming climate will intensify the water cycle, resulting in an exacerbation of water resources crises and flooding risks in the Lancang–Mekong River Basin (LMRB). The mitigation of these risks requires accurate streamflow and flood simulations. Process-based and data-driven hydrological models are the two major approaches for streamflow simulations, while a hybrid of these two methods promises advantageous prediction accuracy. In this study, we developed a hybrid physics-data (HPD) methodology for streamflow and flood prediction under the physics-guided neural network modeling framework. The HPD methodology leveraged simulation information from a process-based model (i.e., VIC-CaMa-Flood) along with the meteorological forcing information (precipitation, maximum temperature, minimum temperature, and wind speed) to simulate the daily streamflow series and flood events, using a long short-term memory (LSTM) neural network. This HPD methodology outperformed the pure process-based VIC-CaMa-Flood model or the pure observational data driven LSTM model by a large margin, suggesting the usefulness of introducing physical regularization in data-driven modeling, and the necessity of observation-informed bias correction for process-based models. We further developed a gradient boosting tree method to measure the information contribution from the process-based model simulation and the meteorological forcing data in our HPD methodology. The results show that the process-based model simulation contributes about 30% to the HPD outcome, outweighing the information contribution from each of the meteorological forcing variables (
ISSN:2073-4441
2073-4441
DOI:10.3390/w14091429