Hybrid Spatiotemporal Contrastive Representation Learning for Content-Based Surgical Video Retrieval
In the medical field, due to their economic and clinical benefits, there is a growing interest in minimally invasive surgeries and microscopic surgeries. These types of surgeries are often recorded during operations, and these recordings have become a key resource for education, patient disease anal...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-05, Vol.11 (9), p.1353 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the medical field, due to their economic and clinical benefits, there is a growing interest in minimally invasive surgeries and microscopic surgeries. These types of surgeries are often recorded during operations, and these recordings have become a key resource for education, patient disease analysis, surgical error analysis, and surgical skill assessment. However, manual searching in this collection of long-term surgical videos is an extremely labor-intensive and long-term task, requiring an effective content-based video analysis system. In this regard, previous methods for surgical video retrieval are based on handcrafted features which do not represent the video effectively. On the other hand, deep learning-based solutions were found to be effective in both surgical image and video analysis, where CNN-, LSTM- and CNN-LSTM-based methods were proposed in most surgical video analysis tasks. In this paper, we propose a hybrid spatiotemporal embedding method to enhance spatiotemporal representations using an adaptive fusion layer on top of the LSTM and temporal causal convolutional modules. To learn surgical video representations, we propose exploring the supervised contrastive learning approach to leverage label information in addition to augmented versions. By validating our approach to a video retrieval task on two datasets, Surgical Actions 160 and Cataract-101, we significantly improve on previous results in terms of mean average precision, 30.012 ± 1.778 vs. 22.54 ± 1.557 for Surgical Actions 160 and 81.134 ± 1.28 vs. 33.18 ± 1.311 for Cataract-101. We also validate the proposed method’s suitability for surgical phase recognition task using the benchmark Cholec80 surgical dataset, where our approach outperforms (with 90.2% accuracy) the state of the art. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11091353 |