Software tool-set for automated quantum system identification and device bring up
We present a software tool-set which combines the theoretical, optimal control view of quantum devices with the practical operation and characterization tasks required for quantum computing. In the same framework, we perform model-based simulations to create control schemes, calibrate these controls...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a software tool-set which combines the theoretical, optimal control view of quantum devices with the practical operation and characterization tasks required for quantum computing. In the same framework, we perform model-based simulations to create control schemes, calibrate these controls in a closed-loop with the device (or in this demo - by emulating the experimental process) and finally improve the system model through minimization of the mismatch between simulation and experiment, resulting in a digital twin of the device. The model based simulator is implemented using TensorFlow, for numeric efficiency, scalability and to make use of automatic differentiation, which enables gradient-based optimization for arbitrary models and control schemes. Optimizations are carried out with a collection of state-of-the-art algorithms originated in the field of machine learning. All of this comes with a user-friendly Qiskit interface, which allows end-users to easily simulate their quantum circuits on a high-fidelity differentiable physics simulator. |
---|---|
ISSN: | 2331-8422 |