Experimental assessment of textured tools with nano-lubricants in orthogonal cutting of titanium alloy
In this study, we investigated the effects of composite nano-Cu/WS 2 lubricating oil and single-point diamond indentation-textures on improving the cutting performance of YG8 cemented carbide tools, which is crucial for textures tool applications. The aims of the study were to improve wear resistanc...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2022-05, Vol.36 (5), p.2489-2497 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the effects of composite nano-Cu/WS
2
lubricating oil and single-point diamond indentation-textures on improving the cutting performance of YG8 cemented carbide tools, which is crucial for textures tool applications. The aims of the study were to improve wear resistance and reduce chip adhesion at the tool’s rake face in cutting of titanium alloys. Dot textures with different spacings were fabricated on the surface of YG8 cemented carbide tools through the single-point diamond indentation method, and composite nano-Cu/WS
2
lubricating oil was prepared. Orthogonal cutting tests were carried out under dry cutting and minimal quantity lubricated (MQL) conditions. Investigate the effect of different texture spacing on the cutting performance in the light of cutting forces, friction coefficient, the deformed chip thickness, tool adhesions, and chip morphology. The results show that the dot texture effectively improved the lubrication conditions in machining titanium alloys under the MQL conditions. The dot texture is effective at low speed in the dry cutting conditions. With the increase of cutting speed, the friction coefficient of dot texture tool is affected by texture spacing, and the friction coefficient of DT-200 tool is the smallest. In addition, composite nano Cu/WS
2
lubricating oil forms a lubricating film on the wear path by atomizing the lubricating oil and stores it in the dot texture, which enhances the anti-wear performance in the cutting process and reduces the cutting force and friction coefficient at the tool chip interface. By evaluating cutting force, friction coefficient, chip and tool morphology, it is concluded that DT-100 tool is more effective in improving lubrication conditions. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-022-0431-0 |