Crystallization kinetics of compatibilized blends of polypropylene and polyethylenimine

In this paper, isothermal and non-isothermal crystallization behaviour of neat polypropylene (PP), blends of PP/maleic anhydride grafted polypropylene (PP-g-MA), and PP/PP-g-MA/polyethylenimine (PEI) has been studied by differential scanning calorimetry (DSC). DSC analysis confirmed that PEI promote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2022-06, Vol.147 (12), p.6689-6699
Hauptverfasser: Patra, Pratim Kumar, Jaisingh, Aanchal, Goel, Vishal, Kapur, Gurpreet Singh, Nebhani, Leena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, isothermal and non-isothermal crystallization behaviour of neat polypropylene (PP), blends of PP/maleic anhydride grafted polypropylene (PP-g-MA), and PP/PP-g-MA/polyethylenimine (PEI) has been studied by differential scanning calorimetry (DSC). DSC analysis confirmed that PEI promotes crystallization of PP for blends compatibilized with reactive co-agent PP-g-MA, that was confirmed by decreased crystallization time in compatibilized PP-PEI blends as compared to neat PP. The Avrami equation has been used to analyze isothermal crystallization kinetics for all the compositions. Determined Avrami exponent’s ( n ) values confirmed three-dimensional crystal growth in all the samples and PP sample with 1% PEI and 1% PP-g-MA (PP/1PP-g-MA/1PEI) was found to have the least crystallization half time ( t 1/2 ) . In addition to this, activation energy (∆ E a ) for PP/1PP-g-MA/1PEI blend decreased remarkably as compared to neat PP. The non-isothermal crystallization kinetics was studied by Jeziorny extended Avrami and Mo theories. Application of Jeziorny-Avrami equation showed larger value of log k’ in case of PP/1PP-g-MA/1PEI indicating enhanced rate of crystallization. Lower value of Mo’s parameter F(T) for PP/1PP-g-MA/1PEI than neat PP established higher crystallization rate for the compatibilized blend and hence supported the prior results.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-021-10970-5