Frequency based signal processing technique for pulse modulation ground penetrating radar system

This paper discusses the method of processing the pulse modulation (PM) ground penetrating radar (GPR) system to detect an embedded object underground. The proposed technique is using frequency domain operation which can be classified based on two parameters which are magnitude and phase. The proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2021-10, Vol.11 (5), p.4104
Hauptverfasser: Che Ku Melor, Che Ku Nor Azie Hailma, Joret, Ariffuddin, Razali, Maryanti, Ponniran, Asmarashid, Sulong, Muhammad Suhaimi, Omar, Rosli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses the method of processing the pulse modulation (PM) ground penetrating radar (GPR) system to detect an embedded object underground. The proposed technique is using frequency domain operation which can be classified based on two parameters which are magnitude and phase. The process of detecting the position and depth of iron objects in dry sandy soil is easier to identify using the techniques and parameters that have been introduced. The selection of the Dipole antenna as a sensor device to detect iron objects has been designed in a frequency range of 70 MHz to 80 MHz. Based on the simulation, the proposed technique seems to be able to detect underground iron objects. By using the magnitude value, the underground iron object that can be detected as displayed in GPR radargram is in the depth range from 0 mm until 1000 mm. Meanwhile, by using the phase value, the embedded underground iron object detected is in the range of depth between 900 mm and 1000 mm. Therefore, based on this promising result, the proposed technique and parameters are considered to be used in
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v11i5.pp4104-4112