Developing an automatic brachial artery segmentation and bloodstream analysis tool using possibilistic C-means clustering from color doppler ultrasound images

Automatic segmentation of brachial artery and blood-flow dynamics are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose a software that is noise tolerant and fully automatic in segmentation of brachial artery from color Dop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2021-06, Vol.11 (3), p.2653
Hauptverfasser: Park, Joonsung, Song, Doo Heon, Kim, Kwang Baek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic segmentation of brachial artery and blood-flow dynamics are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose a software that is noise tolerant and fully automatic in segmentation of brachial artery from color Doppler ultrasound images. Possibilistic C-Means clustering algorithm is applied to make the automatic segmentation. We use HSV color model to enhance the contrast of bloodstream area in the input image. Our software also provides index of hemoglobin distribution with respect to the blood flow velocity for pathologists to proceed further analysis. In experiment, the proposed method successfully extracts the target area in 59 out of 60 cases (98.3%) with field expert’s verification.
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v11i3.pp2653-2659