Task-specific Compression for Multi-task Language Models using Attribution-based Pruning
Multi-task language models show outstanding performance for various natural language understanding tasks with only a single model. However, these language models utilize an unnecessarily large number of model parameters, even when used only for a specific task. This paper proposes a novel training-f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-task language models show outstanding performance for various natural language understanding tasks with only a single model. However, these language models utilize an unnecessarily large number of model parameters, even when used only for a specific task. This paper proposes a novel training-free compression method for multi-task language models using a pruning method. Specifically, we use an attribution method to determine which neurons are essential for performing a specific task. We task-specifically prune unimportant neurons and leave only task-specific parameters. Furthermore, we extend our method to be applicable in low-resource and unsupervised settings. Since our compression method is training-free, it uses few computing resources and does not destroy the pre-trained knowledge of language models. Experimental results on the six widely-used datasets show that our proposed pruning method significantly outperforms baseline pruning methods. In addition, we demonstrate that our method preserves performance even in an unseen domain setting. |
---|---|
ISSN: | 2331-8422 |