Task-specific Compression for Multi-task Language Models using Attribution-based Pruning

Multi-task language models show outstanding performance for various natural language understanding tasks with only a single model. However, these language models utilize an unnecessarily large number of model parameters, even when used only for a specific task. This paper proposes a novel training-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Yang, Nakyeong, Jang, Yunah, Lee, Hwanhee, Jung, Seohyeong, Jung, Kyomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-task language models show outstanding performance for various natural language understanding tasks with only a single model. However, these language models utilize an unnecessarily large number of model parameters, even when used only for a specific task. This paper proposes a novel training-free compression method for multi-task language models using a pruning method. Specifically, we use an attribution method to determine which neurons are essential for performing a specific task. We task-specifically prune unimportant neurons and leave only task-specific parameters. Furthermore, we extend our method to be applicable in low-resource and unsupervised settings. Since our compression method is training-free, it uses few computing resources and does not destroy the pre-trained knowledge of language models. Experimental results on the six widely-used datasets show that our proposed pruning method significantly outperforms baseline pruning methods. In addition, we demonstrate that our method preserves performance even in an unseen domain setting.
ISSN:2331-8422