Positivity results for Weyl's pseudodifferential calculus on the Wiener space
This paper deals with positivity properties for a pseudodifferential calculus, generalizing Weyl's classical quantization, and set on an infinite dimensional phase space, the Wiener space. In this frame, we show that a positive symbol does not, in general, give a positive operator. In order to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with positivity properties for a pseudodifferential calculus, generalizing Weyl's classical quantization, and set on an infinite dimensional phase space, the Wiener space. In this frame, we show that a positive symbol does not, in general, give a positive operator. In order to measure the nonpositivity, we establish a Gårding's inequality, which holds for the symbol classes at hand. Nevertheless, for symbols with radial aspects, additional assumptions ensure the positivity of the associated operator. |
---|---|
ISSN: | 2331-8422 |