Density Estimates of 1-Avoiding Sets via Higher Order Correlations
We improve the best known upper bound on the density of a planar measurable set A containing no two points at unit distance to 0.25442. We use a combination of Fourier analytic and linear programming methods to obtain the result. The estimate is achieved by means of obtaining new linear constraints...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2022-06, Vol.67 (4), p.1245-1256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We improve the best known upper bound on the density of a planar measurable set
A
containing no two points at unit distance to 0.25442. We use a combination of Fourier analytic and linear programming methods to obtain the result. The estimate is achieved by means of obtaining new linear constraints on the autocorrelation function of
A
utilizing triple-order correlations in
A
, a concept that has not been previously studied. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-020-00263-3 |