Large-scale Regularity of Nearly Incompressible Elasticity in Stochastic Homogenization
In this paper, we systematically study the regularity theory of the linear system of nearly incompressible elasticity. In the setting of stochastic homogenization, we develop new techniques to establish the large-scale estimates of displacement and pressure, which are uniform in both the scale param...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2022-06, Vol.244 (3), p.1311-1372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we systematically study the regularity theory of the linear system of nearly incompressible elasticity. In the setting of stochastic homogenization, we develop new techniques to establish the large-scale estimates of displacement and pressure, which are uniform in both the scale parameter and the incompressibility parameter. In particular, we obtain the boundary estimates in a new class of Lipschitz domains whose boundaries are smooth at large scales and bumpy at small scales. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-022-01772-6 |