Normalizers of maximal tori and real forms of Lie groups
Given a complex connected reductive Lie group G with a maximal torus H ⊂ G , Tits defined an extension W G T of the corresponding Weyl group W G . The extended group is supplied with an embedding into the normalizer N G ( H ) such that W G T together with H generate N G ( H ) . In this paper we prop...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2022-06, Vol.8 (2), p.655-671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a complex connected reductive Lie group
G
with a maximal torus
H
⊂
G
, Tits defined an extension
W
G
T
of the corresponding Weyl group
W
G
. The extended group is supplied with an embedding into the normalizer
N
G
(
H
)
such that
W
G
T
together with
H
generate
N
G
(
H
)
. In this paper we propose an interpretation of the Tits classical construction in terms of the maximal split real form
G
(
R
)
⊂
G
, which leads to a simple topological description of
W
G
T
. We also consider a variation of the Tits construction associated with compact real form
U
of
G
. In this case we define an extension
W
G
U
of the Weyl group
W
G
, naturally embedded into the group extension
U
~
:
=
U
⋊
Γ
of the compact real form
U
by the Galois group
Γ
=
Gal
(
C
/
R
)
. Generators of
W
G
U
are squared to identity as in the Weyl group
W
G
. However, the non-trivial action of
Γ
by outer automorphisms requires
W
G
U
to be a non-trivial extension of
W
G
. This gives a specific presentation of the maximal torus normalizer of the group extension
U
~
. Finally, we describe explicitly the adjoint action of
W
G
T
and
W
G
U
on the Lie algebra of
G
. |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-022-00536-6 |